【題目】某地某所高中2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對(duì)比該校考生的升學(xué)情況,統(tǒng)計(jì)了該校2016年和2019年的高考升學(xué)情況,得到如圖所示:則下列結(jié)論正確的(

A.2016年相比,2019年一本達(dá)線人數(shù)有所減少

B.2016年相比,2019年二本達(dá)線人數(shù)增加了1

C.2016年相比,2019年藝體達(dá)線人數(shù)相同

D.2016年相比,2019年不上線的人數(shù)有所增加

【答案】D

【解析】

設(shè)2016年參考人數(shù)為,依據(jù)表格計(jì)算兩年的一本達(dá)線人數(shù)、二本達(dá)線人數(shù)、藝體達(dá)線人數(shù)、不上線的人數(shù),然后比較得出結(jié)論。

設(shè)2016年參考人數(shù)為,則

2016年一本達(dá)線人數(shù),2019年一本達(dá)線人數(shù),A錯(cuò);

2016年二本達(dá)線人數(shù),2019年二本達(dá)線人數(shù),增加了,不是一倍,B錯(cuò);

2016年藝體達(dá)線人數(shù),2019年藝體達(dá)線人數(shù),C錯(cuò);

2016年不上線的人數(shù),20196年不上線的人數(shù),D正確。

故選:D。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)多年的努力,炎陵黃桃在國(guó)內(nèi)乃至國(guó)際上逐漸打開(kāi)了銷路,成為炎陵部分農(nóng)民脫貧致富的好產(chǎn)品.為了更好地銷售,現(xiàn)從某村的黃桃樹(shù)上隨機(jī)摘下了100個(gè)黃桃進(jìn)行測(cè)重,其質(zhì)量分布在區(qū)間內(nèi)(單位:克),統(tǒng)計(jì)質(zhì)量的數(shù)據(jù)作出其頻率分布直方圖如圖所示:

(1)按分層抽樣的方法從質(zhì)量落在,的黃桃中隨機(jī)抽取5個(gè),再?gòu)倪@5個(gè)黃桃中隨機(jī)抽2個(gè),求這2個(gè)黃桃質(zhì)量至少有一個(gè)不小于400克的概率;

(2)以各組數(shù)據(jù)的中間數(shù)值代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該村的黃桃樹(shù)上大約還有100000個(gè)黃桃待出售,某電商提出兩種收購(gòu)方案:

A.所有黃桃均以20/千克收購(gòu);

B.低于350克的黃桃以5/個(gè)收購(gòu),高于或等于350克的以9/個(gè)收購(gòu).

請(qǐng)你通過(guò)計(jì)算為該村選擇收益最好的方案.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)直線與拋物線相交于兩點(diǎn),與圓相切于點(diǎn),為線段中點(diǎn),若這樣的直線恰有,的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求不等式的解集;

2)若不等式的解集包含[–1,1],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,直角梯形中,,,,四邊形為矩形,.

1)求證:平面平面;

2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,是兩個(gè)平面,m,n是兩條直線,有下列四個(gè)命題;

①如果,,那么.

②如果,那么.

③如果,那么.

④如果,那么m所成的角和n所成的角相等.

其中正確的命題的個(gè)數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).(其中為自然對(duì)數(shù)的底數(shù))

(1)若恒成立,求的最大值;

(2)設(shè),若存在唯一的零點(diǎn),且對(duì)滿足條件的不等式恒成立,求實(shí)數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開(kāi)辟為水果園種植桃樹(shù),已知角A的長(zhǎng)度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.

1)若圍墻AP,AQ總長(zhǎng)度為200米,如何圍可使得三角形地塊APQ的面積最大?

2)已知AP段圍墻高1米,AQ段圍墻高1.5米,造價(jià)均為每平方米100.若圍圍墻用了20000元,問(wèn)如何圍可使竹籬笆用料最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,,為線段上一點(diǎn).

(1)若,則在線段上是否存在點(diǎn),使得平面?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由

(2)己知,若異面直線角,二而角的余弦值為,求的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案