相關(guān)習(xí)題
 0  264081  264089  264095  264099  264105  264107  264111  264117  264119  264125  264131  264135  264137  264141  264147  264149  264155  264159  264161  264165  264167  264171  264173  264175  264176  264177  264179  264180  264181  264183  264185  264189  264191  264195  264197  264201  264207  264209  264215  264219  264221  264225  264231  264237  264239  264245  264249  264251  264257  264261  264267  264275  266669 

科目: 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)處的切線方程;

(Ⅱ)若對(duì)任意的恒成立,求的取值范圍;

(Ⅲ)當(dāng)時(shí),設(shè)函數(shù).證明:對(duì)于任意的,函數(shù)有且只有一個(gè)零點(diǎn).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的左焦點(diǎn)在拋物線的準(zhǔn)線上,且橢圓的短軸長為2,分別為橢圓的左,右焦點(diǎn),分別為橢圓的左,右頂點(diǎn),設(shè)點(diǎn)在第一象限,且軸,連接交橢圓于點(diǎn),直線的斜率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若三角形的面積等于四邊形的面積,求的值;

(Ⅲ)設(shè)點(diǎn)的中點(diǎn),射線為原點(diǎn))與橢圓交于點(diǎn),滿足,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,四棱錐的底面是矩形,,點(diǎn)的中點(diǎn),交于點(diǎn).

(Ⅰ)求異面直線所成角的余弦值;

(Ⅱ)求證:;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在正方形中,分別是的中點(diǎn),將正方形沿著線段折起,使得,設(shè)的中點(diǎn).

1)求證:平面;

2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】為了調(diào)查居民對(duì)城市共享單車的滿意度,隨機(jī)選取了100人進(jìn)行問卷調(diào)查,并將問卷中的100人根據(jù)其滿意度評(píng)分值按照分為5組,得到號(hào)如圖所示的頻率分布直方圖.

(Ⅰ)求滿意度分值不低于70分的人數(shù).

(Ⅱ)已知滿意度分值在內(nèi)的男性與女性的比為3:4,為提高共享單車的滿意度,現(xiàn)從滿意度分值在的人中隨機(jī)抽取2人進(jìn)行座談,求這2人中只有一位男性的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中.

(1)若曲線在點(diǎn)處的切線與直線平行,求滿足的關(guān)系;

(2)當(dāng)時(shí),討論的單調(diào)性;

(3)當(dāng)時(shí),對(duì)任意的,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù),其中,.

(1)當(dāng)時(shí),解不等式;

(2)若函數(shù)在區(qū)間內(nèi)恰有一個(gè)零點(diǎn),求的取值范圍;

(3)設(shè),當(dāng)函數(shù)的定義域?yàn)?/span>時(shí),值域?yàn)?/span>,求ab的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】在三棱柱中,底面是邊長為4的等邊三角形,側(cè)棱垂直于底面,,M是棱AC的中點(diǎn).

(1)求證:平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率為,短軸長為.

(1)求的方程;

(2)如圖,經(jīng)過橢圓左頂點(diǎn)且斜率為的直線交于兩點(diǎn),交軸于點(diǎn),點(diǎn)為線段的中點(diǎn),若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,過點(diǎn)為坐標(biāo)原點(diǎn))垂直的直線交直線于點(diǎn),且面積為,求的值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線過焦點(diǎn)且平行于軸的弦長為.點(diǎn),直線交于兩點(diǎn),

1)求拋物線的方程;

2)若不平行于軸,且為坐標(biāo)原點(diǎn)),證明:直線過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案