已知αR,sin α2cos α,則tan 2α等于(  )

A. B. C.- D.-

 

C

【解析】sin α2cos α,

sin2α4sin α·cos α4cos2α

化簡,得4sin 2α=-3cos 2α

tan 2α=-.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評3練習(xí)卷(解析版) 題型:選擇題

ABC中,若sin2Asin2Bsin2C,則ABC的形狀是(  )

A.銳角三角形 B.直角三角形 C.鈍角三角形 D.不能確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練9練習(xí)卷(解析版) 題型:解答題

已知數(shù)列{an}是首項(xiàng)為,公比為的等比數(shù)列,設(shè)bn15log3ant,常數(shù)tN*.

(1)求證:{bn}為等差數(shù)列;

(2)設(shè)數(shù)列{cn}滿足cnanbn,是否存在正整數(shù)k,使ckck1,ck2按某種次序排列后成等比數(shù)列?若存在,求k,t的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練8練習(xí)卷(解析版) 題型:選擇題

已知非零向量a,bc滿足abc0,向量ab的夾角為60°,且|a||b|1,則向量ac的夾角為(  )

A30° B60° C120° D150°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練7練習(xí)卷(解析版) 題型:填空題

如圖,嵩山上原有一條筆直的山路BC,現(xiàn)在又新架設(shè)了一條索道AC,小李在山腳B處看索道AC,發(fā)現(xiàn)張角ABC120°;從B處攀登400到達(dá)D處,回頭看索道AC,發(fā)現(xiàn)張角ADC150°;從D處再攀登800方到達(dá)C處,則索道AC的長為______米.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練18練習(xí)卷(解析版) 題型:解答題

某商場為吸引顧客消費(fèi)推出一項(xiàng)促銷活動,促銷規(guī)則如下:到該商場購物消費(fèi)滿100元就可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,進(jìn)行抽獎(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的;若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎,獲得10元獎金;若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎,獲得5元獎金;若轉(zhuǎn)盤指針落在其他區(qū)域,則不中獎(若指針停到兩區(qū)間的實(shí)線處,則重新轉(zhuǎn)動).若顧客在一次消費(fèi)中多次中獎,則對其獎勵進(jìn)行累加.已知顧客甲到該商場購物消費(fèi)了268元,并按照規(guī)則參與了促銷活動.

(1)求顧客甲中一等獎的概率;

(2)X為顧客甲所得的獎金數(shù),求X的分布列及其數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練18練習(xí)卷(解析版) 題型:選擇題

已知隨機(jī)變量XN(1,4)P(X<2)0.72,則P(1<X<2)等于(  )

A0.36 B0.16 C0.22 D0.28

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練16練習(xí)卷(解析版) 題型:填空題

已知點(diǎn)F是雙曲線1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過點(diǎn)F且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若ABE是銳角三角形,則該雙曲線的離心率e的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練12練習(xí)卷(解析版) 題型:解答題

如圖,在四棱錐P-ABCD中,PA平面ABCD,底面ABCD是菱形,點(diǎn)O是對角線ACBD的交點(diǎn),MPD的中點(diǎn),AB2BAD60°.

(1)求證:OM平面PAB;

(2)求證:平面PBD平面PAC

(3)當(dāng)四棱錐P-ABCD的體積等于時,求PB的長.

 

查看答案和解析>>

同步練習(xí)冊答案