7.已知圓C的圓心為原點(diǎn),且與截直線$x+y+2\sqrt{6}=0$所得弦長等于圓的半徑.
(1)求圓C的半徑;
(2)點(diǎn)P在直線x=8上,過P點(diǎn)引圓C的兩條切線PA,PB,切點(diǎn)為A,B,是否存在定點(diǎn)M使得直線AB恒過定點(diǎn)?若存在,求出定點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

分析 (1)由題意,直線$x+y+2\sqrt{6}=0$被圓截得的弦長等于圓的半徑,利用弦長公式可得答案.
(2)利用切線的性質(zhì),OA⊥AP,OB⊥BP,可得A,B在以O(shè)P為直徑的圓上.設(shè)P的坐標(biāo),求出OP為直徑的圓,利用公共弦的性質(zhì),可得AB直線方程,可得定點(diǎn)坐標(biāo).

解答 解:(1)由題意,直線$x+y+2\sqrt{6}=0$被圓截得的弦長等于圓的半徑,
即圓的半徑r=$\frac{4\sqrt{2}}{\sqrt{1+1}}=4$,即r=4.
∴圓的方程為:x2+y2=16
(2)由題意,AP,BP是圓C的兩條切線,∴OA⊥AP,OB⊥BP,
可得A,B在以O(shè)P為直徑的圓上.
設(shè)P的坐標(biāo)為(8,b),
則線段OP的中點(diǎn)坐標(biāo)即圓心為(4,$\frac{2}$).
∴以O(shè)P為直徑的圓方程為$(x-4)^{2}+(y-\frac{2})^{2}={4}^{2}+(\frac{2})^{2}$.
化解可得:x2+y2-8x-by=0.
直線AB為兩個(gè)圓的公共弦,
∴8x+yb=16.
故得直線恒過(2,0).

點(diǎn)評(píng) 此題考查了直線與圓的位置關(guān)系切線方程問題,涉及的知識(shí)有:點(diǎn)到直線的距離公式,圓的標(biāo)準(zhǔn)方程,當(dāng)直線與圓相切時(shí),圓心到切線的距離等于圓的半徑,兩圓的公共弦方程問題.熟練掌握此性質(zhì)是解本題的關(guān)鍵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx+x2
(Ⅰ)求函數(shù)h(x)=f(x)-3x的極值;
(Ⅱ)若函數(shù)g(x)=f(x)-ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,長方體ABCD-A1B1C1D1中,點(diǎn)M在棱BB1上,兩條直線MA,MC與平面ABCD所成角均為θ,AC與BD交于點(diǎn)O.
(1)求證:AC⊥OM;
(2)當(dāng)M為BB1的中點(diǎn),且θ=$\frac{π}{4}$時(shí),求二面角A-D1M-B1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$=(3,-4),則與$\overrightarrow{a}$反向的單位向量的坐標(biāo)為$(-\frac{3}{5},\frac{4}{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.(1+2x)n的展開式中第6項(xiàng)與第7項(xiàng)的系數(shù)相等,則展開中各二項(xiàng)式系數(shù)的和為(  )
A.64B.128C.38D.256

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若$cosα=-\frac{3}{5}$,且$α∈[{\frac{π}{2},π}]$,則$cos({α-\frac{π}{4}})$=( 。
A.$\frac{{\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{{7\sqrt{2}}}{10}$D.$-\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}滿足${a_0}=\frac{1}{3}$,${a_n}=\sqrt{\frac{1}{2}({1+{a_{n-1}}})}$(n=1,2,3…),${b_n}=2{a_n}^2-{a_n}$,Sn=b1+b2+…+bn
證明:(Ⅰ)an-1<an<1(n≥1);
(Ⅱ)$0<{S_n}<n-\frac{1}{2}$(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某企業(yè)擬生產(chǎn)一種如圖所示的圓柱形易拉罐(上下底面及側(cè)面的厚度不計(jì)).易拉罐的體積為162πml,設(shè)圓柱的高度為hcm,底面半徑為rcm,且h≥6r.假設(shè)該易拉罐的制造費(fèi)用僅與其表面積有關(guān).已知易拉罐側(cè)面制造費(fèi)用為m元/cm2,易拉罐上下底面的制造費(fèi)用均為n元/cm2(m,n為常數(shù),且0<3m<n).
(1)寫出易拉罐的制造費(fèi)用y(元)關(guān)于r(cm)的函數(shù)表達(dá)式,并求其定義域;
(2)求易拉罐制造費(fèi)用最低時(shí)r(cm)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,若$\frac{cosA}{cosB}=\frac{a}=\frac{1}{2}$,$c=2\sqrt{5}$,則△ABC的面積等于( 。
A.1B.2C.$\sqrt{5}$D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案