A. | 1 | B. | 2 | C. | $\sqrt{5}$ | D. | 4 |
分析 由正弦定理可得:sinAcosA=sinBcosB,C=$\frac{π}{2}$.在R△ABC中,由a2+b2=c2=20,$\frac{a}=\frac{1}{2}$,解得:a,b,即可求得△ABC的面積
解答 解:解:∵$\frac{cosA}{cosB}=\frac{a}$,由正弦定理可得:$\frac{cosA}{cosB}=\frac{sinB}{sinA}$,
即sinAcosA=sinBcosB,
可得sin2A=sin2B,解得2A=2B或2A+2B=π,
即A=B或C=$\frac{π}{2}$.
又∵$\frac{a}=\frac{1}{2}$,∴C=$\frac{π}{2}$,
在R△ABC中,由a2+b2=c2=20,$\frac{a}=\frac{1}{2}$,
解得:a=4,b=2
則△ABC的面積等于$\frac{1}{2}ab=4$.
故選:D.
點評 本題考查了正弦定理,三角形面積計算,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2) | B. | $({\frac{1}{2},+∞})$ | C. | $({0,\frac{1}{2}})∪({2,+∞})$ | D. | $({\frac{1}{2},1})∪({1,2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{25}{3}$ | B. | 16 | C. | 20 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $a≤-\frac{1}{4}$ | B. | a≤0 | C. | $a≤\frac{1}{4}$ | D. | a≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2.4 | B. | 1.8 | C. | 1.6 | D. | 1.2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com