【題目】已知兩條直線l1:y=m和l2:y= (m>0),l1與函數(shù)y=|log2x|的圖象從左至右相交于點A,B,l2與函數(shù)y=|log2x|的圖象從左至右相交于點C,D.記線段AC和BD在X軸上的投影長度分別為a,b,當(dāng)m變化時, 的最小值為( )
A.16
B.8
C.8
D.4

【答案】B
【解析】解:設(shè)A,B,C,D各點的橫坐標(biāo)分別為xA , xB , xC , xD ,
則﹣log2xA=m,log2xB=m;﹣log2xC= ,log2xD=
∴xA=2m , xB=2m , xC= ,xD=
∴a=|xA﹣xC|,b=|xB﹣xD|,
= =| |=2m =
又m>0,∴m+ = (2m+1)+ ≥2 = (當(dāng)且僅當(dāng)m= 時取“=”)
=8
故選B.
【考點精析】根據(jù)題目的已知條件,利用基本不等式在最值問題中的應(yīng)用的相關(guān)知識可以得到問題的答案,需要掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=ln(x+1)+ +ax+b(a,b∈R,a,b為常數(shù)),曲線y=f(x)與直線y= x在(0,0)點相切.
(1)求a,b的值;
(2)證明:當(dāng)0<x<2時,f(x)<

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正數(shù)a,b,c滿足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,則 的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)某食品廠為了檢查一條自動包裝流水線的生產(chǎn)情況,隨機(jī)抽取該流水線上件產(chǎn)品作為樣本稱出它們的重量(單位:克),重量的分組區(qū)間為,, ,,由此得到樣本的頻率分布直方圖,如圖所示.

1)根據(jù)頻率分布直方圖,求重量超過克的產(chǎn)品數(shù)量;

2)在上述抽取的件產(chǎn)品中任取件,設(shè)為重量超過克的產(chǎn)品數(shù)量,求的分布列;

3)從該流水線上任取件產(chǎn)品,求恰有件產(chǎn)品的重量超過克的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)ξ為隨機(jī)變量,從棱長為1的正方體的12條棱中任取兩條,當(dāng)兩條棱相交時,ξ=0;當(dāng)兩條棱平行時,ξ的值為兩條棱之間的距離;當(dāng)兩條棱異面時,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代著名的數(shù)學(xué)著作有10部算書,被稱為“算經(jīng)十書”.某校數(shù)學(xué)興趣小組甲、乙、丙、丁四名同學(xué)對古代著名的數(shù)學(xué)著作產(chǎn)生濃厚的興趣.一天,他們根據(jù)最近對這十部書的閱讀本數(shù)情況說了這些話,甲:“乙比丁少”;乙:“甲比丙多”;丙:“我比丁多”; 丁:“丙比乙多”,他們說的這些話中,只有一個人說的是真實的,而這個人正是他們四個人中讀書本數(shù)最少的一個(他們四個人對這十部書閱讀本數(shù)各不相同).甲、乙、丙、丁按各人讀書本數(shù)由少到多的排列是( )

A. 乙甲丙丁 B. 甲丁乙丙 C. 丙甲丁乙 D. 甲丙乙丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機(jī)收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.

一次性購物量

1至4件

5 至8件

9至12件

13至16件

17件及以上

顧客數(shù)(人)

x

30

25

y

10

結(jié)算時間(分鐘/人)

1

1.5

2

2.5

3

已知這100位顧客中的一次購物量超過8件的顧客占55%.
(1)確定x,y的值,并求顧客一次購物的結(jié)算時間X的分布列與數(shù)學(xué)期望;
(2)若某顧客到達(dá)收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過2.5分鐘的概率.(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓有以下性質(zhì):

①過圓上一點的圓的切線方程是.

②若不在坐標(biāo)軸上的點為圓外一點,過作圓的兩條切線,切點分別為,則垂直,即.

(1)類比上述有關(guān)結(jié)論,猜想過橢圓上一點的切線方程 (不要求證明);

(2)若過橢圓外一點不在坐標(biāo)軸上)作兩直線,與橢圓相切于兩點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年是中華人民共和國成立70周年,某校黨支部舉辦了一場“我和我的祖國”知識競賽,滿分100分,回收40份答卷,成績均落在區(qū)間內(nèi),將成績繪制成如下的頻率分布直方圖.

1)估計知識競賽成績的中位數(shù)和平均數(shù);

2)從,分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取5份答卷,再從對應(yīng)的黨員中選出3位黨員參加縣級交流會,求選出的3位黨員中有2位成績來自于分?jǐn)?shù)段的概率.

查看答案和解析>>

同步練習(xí)冊答案