【題目】我國古代著名的數(shù)學(xué)著作有10部算書,被稱為“算經(jīng)十書”.某校數(shù)學(xué)興趣小組甲、乙、丙、丁四名同學(xué)對古代著名的數(shù)學(xué)著作產(chǎn)生濃厚的興趣.一天,他們根據(jù)最近對這十部書的閱讀本數(shù)情況說了這些話,甲:“乙比丁少”;乙:“甲比丙多”;丙:“我比丁多”; 丁:“丙比乙多”,他們說的這些話中,只有一個人說的是真實(shí)的,而這個人正是他們四個人中讀書本數(shù)最少的一個(他們四個人對這十部書閱讀本數(shù)各不相同).甲、乙、丙、丁按各人讀書本數(shù)由少到多的排列是( )

A. 乙甲丙丁 B. 甲丁乙丙 C. 丙甲丁乙 D. 甲丙乙丁

【答案】D

【解析】分析:分別假設(shè)說真話的是甲、乙、丙、丁,仔細(xì)分析四個人的話,從而可得結(jié)論.

詳解:假設(shè)甲說的是真話,則另外三人說的都是假話,

從而得到:“乙比丁少”;“甲比丙少”; “丙比丁少”; “丙比乙少”,

甲、乙、丙、丁按各人讀書本數(shù)由少到多的排列是甲丙乙丁,符合題意,

假設(shè)乙說的是真話,則另外三人說的都是假話,

從而得到“丙比乙少”,不合題意;

假設(shè)丙說的是真話,則另外三人說的都是假話,

從而得到“丙比丁多”,不合題意;

假設(shè)丁說的是真話,則另外三人說的都是假話,

從而得到“丙比丁少”,不合題意,故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)市場調(diào)查,新街口某新開業(yè)的商場在過去一個月內(nèi)(以30天計(jì)),顧客人數(shù)(千人)與時間(天)的函數(shù)關(guān)系近似滿足),人均消費(fèi)(元)與時間(天)的函數(shù)關(guān)系近似滿足

(1)求該商場的日收益(千元)與時間(天)(, )的函數(shù)關(guān)系式;

(2)求該商場日收益的最小值(千元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),設(shè),

(1)f(-1)=0,且對任意實(shí)數(shù)x均有f(x)0成立,F(x)的表達(dá)式;

(2)(1)的條件下,當(dāng)x[-2,2],g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;

(3)設(shè)mn<0,m+n>0,a>0,f(x)滿足f(-x)=f(x),試比較F(m)+F(n)的值與0的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程x[0,2]時有唯一解,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩條直線l1:y=m和l2:y= (m>0),l1與函數(shù)y=|log2x|的圖象從左至右相交于點(diǎn)A,B,l2與函數(shù)y=|log2x|的圖象從左至右相交于點(diǎn)C,D.記線段AC和BD在X軸上的投影長度分別為a,b,當(dāng)m變化時, 的最小值為( )
A.16
B.8
C.8
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在國內(nèi)汽車市場中,國產(chǎn)SUV出現(xiàn)了持續(xù)不退的銷售熱潮,2018年國產(chǎn)SUV銷量排行榜完整版已經(jīng)出爐,某品牌車型以驚人的銷量成績擊退了所有虎視眈眈的對手,再次霸氣登頂,下面是該品牌國產(chǎn)SUV分別在2017年與2018711月份的銷售量對比表

時間

7

8

9

10

11

2017年(單位:萬輛)

2.8

3.9

3.5

4.4

5.4

2018年(單位:萬輛)

3.8

3.9

4.5

4.9

5.4

(Ⅰ)若從7月至11月中任選兩個月份,求至少有一個月份這兩年該國產(chǎn)品牌SUV銷量相同的概率。

(Ⅱ)分別求這兩年7月至11月的銷售數(shù)據(jù)的平均數(shù),并直接判斷哪年的銷售量比較穩(wěn)定。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),記A(n)=a1+a2+…+an , B(n)=a2+a3+…+an+1 , C(n)=a3+a4+…+an+2 , n=1,2,….
(1)若a1=1,a2=5,且對任意n∈N* , 三個數(shù)A(n),B(n),C(n)組成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式.
(2)證明:數(shù)列{an}是公比為q的等比數(shù)列的充分必要條件是:對任意n∈N* , 三個數(shù)A(n),B(n),C(n)組成公比為q的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,∠ACB=45°,BC=3,過動點(diǎn)A作AD⊥BC,垂足D在線段BC上且異于點(diǎn)B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),

(1)當(dāng)BD的長為多少時,三棱錐A﹣BCD的體積最大;
(2)當(dāng)三棱錐A﹣BCD的體積最大時,設(shè)點(diǎn)E,M分別為棱BC,AC的中點(diǎn),試在棱CD上確定一點(diǎn)N,使得EN⊥BM,并求EN與平面BMN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個酒杯的軸截面是一條拋物線的一部分,它的方程是x2=2y,y∈[0,10],在杯內(nèi)放入一個清潔球,要求清潔球能擦凈酒杯的最底部(如圖),則清潔球的最大半徑為

查看答案和解析>>

同步練習(xí)冊答案