【題目】已知圓有以下性質(zhì):

①過圓上一點的圓的切線方程是.

②若不在坐標(biāo)軸上的點為圓外一點,過作圓的兩條切線,切點分別為,則垂直,即.

(1)類比上述有關(guān)結(jié)論,猜想過橢圓上一點的切線方程 (不要求證明);

(2)若過橢圓外一點不在坐標(biāo)軸上)作兩直線,與橢圓相切于兩點,求證:為定值.

【答案】(1)切線方程是;(2)見解析.

【解析】分析:(1)根據(jù)類比推理可得結(jié)果;(2)設(shè)由(1)得過橢圓上點的切線的方程是,同理,又過兩點的直線是唯一的,直線的方程是,,又,從而可得結(jié)果.

詳解:(1)過橢圓上一點的的切線方程是

(2)設(shè)

由(1)得過橢圓上點的切線的方程是,

∵直線過點

同理

又過兩點的直線是唯一的,

∴直線的方程是.

,

為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點處的切線與直線垂直.

(1)求函數(shù)的極值;

(2)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩條直線l1:y=m和l2:y= (m>0),l1與函數(shù)y=|log2x|的圖象從左至右相交于點A,B,l2與函數(shù)y=|log2x|的圖象從左至右相交于點C,D.記線段AC和BD在X軸上的投影長度分別為a,b,當(dāng)m變化時, 的最小值為( )
A.16
B.8
C.8
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),記A(n)=a1+a2+…+an , B(n)=a2+a3+…+an+1 , C(n)=a3+a4+…+an+2 , n=1,2,….
(1)若a1=1,a2=5,且對任意n∈N* , 三個數(shù)A(n),B(n),C(n)組成等差數(shù)列,求數(shù)列{an}的通項公式.
(2)證明:數(shù)列{an}是公比為q的等比數(shù)列的充分必要條件是:對任意n∈N* , 三個數(shù)A(n),B(n),C(n)組成公比為q的等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在(﹣∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)}仍是等比數(shù)列,則稱f(x)為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在(﹣∞,0)∪(0,+∞)上的如下函數(shù):①f(x)=x2;②f(x)=2x;③f(x)= ;④f(x)=ln|x|.則其中是“保等比數(shù)列函數(shù)”的f(x)的序號為(
A.①②
B.③④
C.①③
D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,∠ACB=45°,BC=3,過動點A作AD⊥BC,垂足D在線段BC上且異于點B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示),

(1)當(dāng)BD的長為多少時,三棱錐A﹣BCD的體積最大;
(2)當(dāng)三棱錐A﹣BCD的體積最大時,設(shè)點E,M分別為棱BC,AC的中點,試在棱CD上確定一點N,使得EN⊥BM,并求EN與平面BMN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】北京某附屬中學(xué)為了改善學(xué)生的住宿條件,決定在學(xué)校附近修建學(xué)生宿舍,學(xué)?倓(wù)辦公室用1000萬元從政府購得一塊廉價土地,該土地可以建造每層1000平方米的樓房,樓房的每平方米建筑費用與建筑高度有關(guān),樓房每升高一層,整層樓每平方米建筑費用提高0.02萬元,已知建筑第5層樓房時,每平方米建筑費用為0.8萬元.

(1)若學(xué)生宿舍建筑為層樓時,該樓房綜合費用為萬元,綜合費用是建筑費用與購地費用之和),寫出的表達式;

(2)為了使該樓房每平方米的平均綜合費用最低,學(xué)校應(yīng)把樓層建成幾層?此時平均綜合費用為每平方米多少萬元?

【答案】(1);(2)學(xué)校應(yīng)把樓層建成層,此時平均綜合費用為每平方米萬元

【解析】

由已知求出第層樓房每平方米建筑費用為萬元,得到第層樓房建筑費用,由樓房每升高一層,整層樓建筑費用提高萬元,然后利用等差數(shù)列前項和求建筑層樓時的綜合費用;

設(shè)樓房每平方米的平均綜合費用為,則,然后利用基本不等式求最值.

解:由建筑第5層樓房時,每平方米建筑費用為萬元,

且樓房每升高一層,整層樓每平方米建筑費用提高萬元,

可得建筑第1層樓房每平方米建筑費用為:萬元.

建筑第1層樓房建筑費用為:萬元

樓房每升高一層,整層樓建筑費用提高:萬元

建筑第x層樓時,該樓房綜合費用為:

;

設(shè)該樓房每平方米的平均綜合費用為

則:,

當(dāng)且僅當(dāng),即時,上式等號成立.

學(xué)校應(yīng)把樓層建成10層,此時平均綜合費用為每平方米萬元.

【點睛】

本題考查簡單的數(shù)學(xué)建模思想方法,訓(xùn)練了等差數(shù)列前n項和的求法,訓(xùn)練了利用基本不等式求最值,是中檔題.

型】解答
結(jié)束】
20

【題目】已知

(1)求函數(shù)的最小正周期和對稱軸方程;

(2)若,求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)滿足:對任意的,都有:

1)求證:函數(shù)是奇函數(shù);

2)若當(dāng)時,有,求證:上是減函數(shù);

3)在(2)的條件下解不等式:;

4)在(2)的條件下求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的六面體中,面是邊長為2的正方形,面是直角梯形,,.

(1)求證:平面

(2)若二面角為60°,求直線和平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案