【題目】設(shè)函數(shù), 為正實(shí)數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求證: ;
(3)若函數(shù)有且只有個(gè)零點(diǎn),求的值.
【答案】(1)(2)詳見解析(3).
【解析】試題分析:(1)由導(dǎo)數(shù)幾何意義得,所以先求導(dǎo)數(shù),代入即得,又,由點(diǎn)斜式得切線方程(2)由于,所以轉(zhuǎn)化為證明恒成立,即,轉(zhuǎn)化為利用導(dǎo)數(shù)求函數(shù)最值(3)因?yàn)?/span>,而先增后減,且,所以必為最大值(極大值),解得,最后證明當(dāng)1不為極值點(diǎn)時(shí), 的零點(diǎn)不唯一.
試題解析:(1)當(dāng)時(shí), ,則,……………2分
所以,又,
所以曲線在點(diǎn)處的切線方程為.…………4分
(2)因?yàn)?/span>,設(shè)函數(shù),
則, …………………………………………………6分
令,得,列表如下:
極大值 |
所以的極大值為.
所以.………………………………………………8分
(3), ,
令,得,因?yàn)?/span>,
所以在上單調(diào)增,在上單調(diào)減.
所以.………………………………………………10分
設(shè),因?yàn)楹瘮?shù)只有1個(gè)零點(diǎn),而,
所以是函數(shù)的唯一零點(diǎn).
當(dāng)時(shí), , 有且只有個(gè)零點(diǎn),
此時(shí),解得.…………………………………………12分
下證,當(dāng)時(shí), 的零點(diǎn)不唯一.
若,則,此時(shí),即,則.
由(2)知, ,又函數(shù)在以和為端點(diǎn)的閉區(qū)間上的圖象不間斷,
所以在和之間存在的零點(diǎn),則共有2個(gè)零點(diǎn),不符合題意;
若,則,此時(shí),即,則.
同理可得,在和之間存在的零點(diǎn),則共有2個(gè)零點(diǎn),不符合題意.
因此,所以的值為.…………………………………………………16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①頻率是反映事件發(fā)生的頻繁程度,概率反映事件發(fā)生的可能性大小;
②做n次隨機(jī)試驗(yàn),事件A發(fā)生m次,則事件A發(fā)生的頻率就是事件A的概率;
③百分率是頻率,但不是概率;
④頻率是不能脫離n次試驗(yàn)的試驗(yàn)值,而概率是具有確定性的不依賴于試驗(yàn)次數(shù)的理論值;
⑤頻率是概率的近似值,概率是頻率的穩(wěn)定值.
其中正確的是____(填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), .
(Ⅰ)判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說明理由;
(Ⅱ)記,討論的單調(diào)性;
(Ⅲ)若在恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)學(xué)生在一次競賽中要回答道題是這樣產(chǎn)生的:從道物理題中隨機(jī)抽取道;從道化學(xué)題中隨機(jī)抽取道;從道生物題中隨機(jī)抽取道.使用合適的方法確定這個(gè)學(xué)生所要回答的三門學(xué)科的題的序號(hào)(物理題的編號(hào)為,化學(xué)題的編號(hào)為,生物題的編號(hào)為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實(shí)數(shù) 的取值范圍,
(2)當(dāng)時(shí),關(guān)于的方程在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根,
求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為.曲線的參數(shù)方程是(為參數(shù)).
(1)求直線和曲線的普通方程;
(2)設(shè)直線和曲線交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次考試中,語文成績服從正態(tài)分布,數(shù)學(xué)成績的頻率分布直方圖如下:
(Ⅰ)如果成績大于135的為特別優(yōu)秀,隨機(jī)抽取的500名學(xué)生在本次考試中語文、數(shù)學(xué)成績特別優(yōu)秀的大約各多少人?(假設(shè)數(shù)學(xué)成績?cè)陬l率分布直方圖中各段是均勻分布的)
(Ⅱ)如果語文和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(Ⅰ)中至少有一科成績特別優(yōu)秀的同學(xué)中隨機(jī)抽取3人,設(shè)3人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望;
(Ⅲ)根據(jù)以上數(shù)據(jù),是否有99%的把握認(rèn)為語文特別優(yōu)秀的同學(xué),數(shù)學(xué)也特別優(yōu)秀.
(附公及表)
①若,則, ;
②, ;
③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com