【題目】設(shè)函數(shù)f(x)=|ex﹣e2a|,若f(x)在區(qū)間(﹣1,3﹣a)內(nèi)的圖象上存在兩點,在這兩點處的切線相互垂直,則實數(shù)a的取值范圍是 .
【答案】(﹣ , )
【解析】解:當x≥2a時,f(x)=|ex﹣e2a|=ex﹣e2a , 此時為增函數(shù),
當x<2a時,f(x)=|ex﹣e2a|=﹣ex+e2a , 此時為減函數(shù),
即當x=2a時,函數(shù)取得最小值0,設(shè)兩個切點為M(x1 , f(x1)),N((x2 , f(x2)),
由圖象知,當兩個切線垂直時,必有,x1<2a<x2 ,
即﹣1<2a<3﹣a,得﹣ <a<1,
∵k1k2=f′(x1)f′(x2)= =﹣ =﹣1,
則 =1,即x1+x2=0,
∵﹣1<x1<0,∴0<x2<1,且x2>2a,
∴2a<1,解得a< ,
綜上﹣ <a< ,
故答案為:(﹣ , )
求出函數(shù)f(x)的表達式,利用數(shù)形結(jié)合,結(jié)合導(dǎo)數(shù)的幾何意義進行求解即可.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位編著. 《算法統(tǒng)宗》對我國民間普及珠算和數(shù)學(xué)知識起到了很大的作用,是東方古代數(shù)學(xué)的名著.在這部著作中,許多數(shù)學(xué)問題都是以歌訣形式呈現(xiàn)的,以“竹筒容米”就是其中一首:家有九節(jié)竹一莖,為因盛米不均平;下頭三節(jié)三升九,上梢四節(jié)貯三升;唯有中間二節(jié)竹,要將米數(shù)次第盛;若是先生能算法,也教算得到天明!大意是:用一根9節(jié)長的竹子盛米,每節(jié)竹筒盛米的容積是不均勻的.下端3節(jié)可盛米3.9升,上端4節(jié)可盛米3升,要按每節(jié)依次盛容積相差同一數(shù)量的方式盛米,中間兩節(jié)可盛米多少升?由以上條件,計算出中間兩節(jié)的容積為( )
A. 升 B. 升 C. 升 D. 升
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,且平面 平面, 為中點, .
(Ⅰ)求證:平面平面;
(Ⅱ)若二面角的平面角大小滿足,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光線從點A(-3,4)射出,到x軸上的點B后,被x軸反射到y(tǒng)軸上的點C,又被y軸反射,這時反射光線恰好過點D(-1,6),求光線BC所在直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當a<0時,若x>0,使f(x)≤0成立,求a的取值范圍;
(2)令g(x)=f(x)﹣(a+1)x,a∈(1,e],證明:對x1 , x2∈[1,a],恒有|g(x1)﹣g(x2)|<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=cosωx(ω>0),將y=f(x)的圖象向右平移 個單位長度后,所得的圖象與原圖象重合,則ω的最小值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=x2lnx,g(x)=ax3﹣x2 .
(1)求函數(shù)f(x)的最小值;
(2)若存在x∈(0,+∞),使f(x)>g(x),求實數(shù)a的取值范圍;
(3)若使方程f(x)﹣g(x)=0在x∈[ ,en](其中e=2.7…為自然對數(shù)的底數(shù))上有解的最小a的值為an , 數(shù)列{an}的前n項和為Sn , 求證:Sn<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若a,b是函數(shù)f(x)=x2﹣px+q(p>0,q>0)的兩個不同的零點,且a,b,﹣2這三個數(shù)可適當排序后成等差數(shù)列,也可適當排序后成等比數(shù)列,則p+q的值等于( )
A.6
B.7
C.8
D.9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn=n2+2n,(n∈N*),求:
(1)數(shù)列{an}的通項公式an;
(2)若bn=an3n , 求數(shù)列{bn}的前n項和 Tn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com