【題目】若a,b是函數(shù)f(x)=x2﹣px+q(p>0,q>0)的兩個(gè)不同的零點(diǎn),且a,b,﹣2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則p+q的值等于(
A.6
B.7
C.8
D.9

【答案】D
【解析】解:由題意可得:a+b=p,ab=q,
∵p>0,q>0,
可得a>0,b>0,
又a,b,﹣2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,
可得 ①或 ②.
解①得: ;解②得:
∴p=a+b=5,q=1×4=4,
則p+q=9.
故選:D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等差數(shù)列的性質(zhì)(在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列),還要掌握等比數(shù)列的基本性質(zhì)({an}為等比數(shù)列,則下標(biāo)成等差數(shù)列的對(duì)應(yīng)項(xiàng)成等比數(shù)列;{an}既是等差數(shù)列又是等比數(shù)列== {an}是各項(xiàng)不為零的常數(shù)列)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在今年的自主招生考試成績中隨機(jī)抽取 100 名考生的筆試成績,分為 5 組制出頻率分布直方圖如圖所示.

組號(hào)

分組

頻數(shù)

頻率

1

5

0.05

2

35

0.35

3

4

5

10

0.1

(1)求的值.

(2)該校決定在成績較好的 、4、5 組用分層抽樣抽取 6 名學(xué)生進(jìn)行面試,則每組應(yīng)各抽多少名學(xué)生?

(3)在(2)的前提下,從抽到 6 名學(xué)生中再隨機(jī)抽取 2 名被甲考官面試,求這 2 名學(xué)生來自同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|ex﹣e2a|,若f(x)在區(qū)間(﹣1,3﹣a)內(nèi)的圖象上存在兩點(diǎn),在這兩點(diǎn)處的切線相互垂直,則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=2x3﹣6x2+m(m為常數(shù)),在[﹣2,2]上有最大值3,那么此函數(shù)在[﹣2,2]上的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得10萬元到1000萬元的投資收益.現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎(jiǎng)金不超過9萬元,同時(shí)獎(jiǎng)金不超過投資收益的20%.
(1)若建立函數(shù)y=f(x)模型制定獎(jiǎng)勵(lì)方案,試用數(shù)學(xué)語言表述該公司對(duì)獎(jiǎng)勵(lì)函數(shù)f(x)模型的基本要求,并分析函數(shù)y= 是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)y= 作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小的正整數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式
(2)當(dāng)d>1時(shí),記cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x|x2axa2-19=0},B={ x|x2-5x+6=0},C={x|x2+2x-8=0},且ABAC,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的右焦點(diǎn)為F(1,0),且點(diǎn)(﹣1, )在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知?jiǎng)又本l過點(diǎn)F,且與橢圓C交于A,B兩點(diǎn),試問x軸上是否存在定點(diǎn)Q,使得 恒成立?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)若,求方程的解;

(2)若關(guān)于x的方程在(0,2)上有兩個(gè)解,求k的取值范圍,并證明

查看答案和解析>>

同步練習(xí)冊(cè)答案