【題目】已知下列命題:

①若,則“”是“”成立的充分不必要條件;

②若橢圓的兩個(gè)焦點(diǎn)為,且弦過(guò)點(diǎn),則的周長(zhǎng)為16;

③若命題“”與命題“”都是真命題,則命題一定是真命題;

④若命題 ,則

其中為真命題的是__________(填序號(hào)).

【答案】①③

【解析】逐一分析所給的各個(gè)說(shuō)法:

①∵abcR,

ac2>bc2a>b

反之,當(dāng)時(shí),由不成立。

,則成立的充分不必要條件;

故①正確;

②若橢圓的兩個(gè)焦點(diǎn)為F1,F2,且弦AB過(guò)點(diǎn)F1,

則△ABF2的周長(zhǎng)為4a=20,故②不正確;

③若命題p與命題pq都是真命題,

p是假命題,所以命題q一定是真命題,故③正確;

④若命題p:xR,x2+x+1<0,則p:xR,x2+x+10,故④錯(cuò)誤

故答案為:①③

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)若曲線處的切線互相平行,求的值;

(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】祖暅?zhǔn)悄媳背瘯r(shí)代的偉大科學(xué)家,5世紀(jì)末提出體積計(jì)算原理,即祖暅原理:“冪勢(shì)既同,則積不容異”.意思是:夾在兩個(gè)平行平面之間的兩個(gè)幾何體,被平行于這兩個(gè)平面的任何一個(gè)平面所截,如果截面面積都相等,那么這兩個(gè)幾何體的體積一定相等.現(xiàn)有以下四個(gè)幾何體:圖①是從圓柱中挖出一個(gè)圓錐所得的幾何體;圖②、圖③、圖④分別是圓錐、圓臺(tái)和半球,則滿(mǎn)足祖暅原理的兩個(gè)幾何體為( 。

A. ①② B. ①③ C. ②④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“楊輝三角”又稱(chēng)“賈憲三角”,是因?yàn)橘Z憲約在公元1050年首先使用“賈憲三角”進(jìn)行高次開(kāi)方運(yùn)算,而楊輝在公元1261年所著的《詳解九章算法》一書(shū)中,記錄了賈憲三角形數(shù)表,并稱(chēng)之為“開(kāi)方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)當(dāng)時(shí), 恒成立,求的取值范圍;

(3)求證:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年5月13日第30屆大連國(guó)際馬拉松賽舉行,某單位的10名跑友報(bào)名參加了半程馬拉松、10公里健身跑、迷你馬拉松3個(gè)項(xiàng)目(每人只報(bào)一項(xiàng)),報(bào)名情況如下:

項(xiàng)目

半程馬拉松

10公里健身跑

迷你馬拉松

人數(shù)

2

3

5

(其中:半程馬拉松公里,迷你馬拉松公里)

(1)從10人中選出2人,求選出的兩人賽程距離之差大于10公里的概率;

(2)從10人中選出2人,設(shè)為選出的兩人賽程距離之和,求隨機(jī)變量的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:
·(1)y=|cos(2x+ )|最小正周期為π;
·(2)函數(shù)y=tan 的圖象的對(duì)稱(chēng)中心是(kπ,0),k∈Z;
·(3)f(x)=tanx﹣sinx在(﹣ , )上有3個(gè)零點(diǎn);
·(4)若 , ,則
其中錯(cuò)誤的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)令,其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍.

(3)當(dāng)時(shí),方程在區(qū)間內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校計(jì)劃面向高一年級(jí)名學(xué)生開(kāi)設(shè)校本選修課程,為確保工作的順利實(shí)施,先按性別進(jìn)行分層抽樣,抽取了名學(xué)生對(duì)社會(huì)科學(xué)類(lèi),自然科學(xué)類(lèi)這兩大類(lèi)校本選修課程進(jìn)行選課意向調(diào)查,其中男生有人.在這名學(xué)生中選擇社會(huì)科學(xué)類(lèi)的男生、女生均為人.

(Ⅰ)分別計(jì)算抽取的樣本中男生及女生選擇社會(huì)科學(xué)類(lèi)的頻率,并以統(tǒng)計(jì)的頻率作為概率,估計(jì)實(shí)際選課中選擇社會(huì)科學(xué)類(lèi)學(xué)生數(shù);

(Ⅱ)根據(jù)抽取的名學(xué)生的調(diào)查結(jié)果,完成下列列聯(lián)表.并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為科類(lèi)的選擇與性別有關(guān)?

選擇自然科學(xué)類(lèi)

選擇社會(huì)科學(xué)類(lèi)

合計(jì)

男生

女生

合計(jì)

附: ,其中.

查看答案和解析>>

同步練習(xí)冊(cè)答案