【題目】若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N≡n(mod m),例如10≡4(mod 6).下面程序框圖的算法源于我國(guó)古代聞名中外的(中國(guó)剩余定理),執(zhí)行該程序框圖,則輸出的n等于(

A.17
B.16
C.15
D.13

【答案】A
【解析】解:由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出同時(shí)滿足條件:
①被3除余2,
②被5除余2,
即被15除余2,最小兩位數(shù),
故輸出的n為17,
故選:A
【考點(diǎn)精析】本題主要考查了程序框圖的相關(guān)知識(shí)點(diǎn),需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說(shuō)明才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某賓館在裝修時(shí),為了美觀,欲將客房的窗戶設(shè)計(jì)成半徑為1m的圓形,并用四根木條將圓分成如圖所示的9個(gè)區(qū)域,其中四邊形ABCD為中心在圓心的矩形,現(xiàn)計(jì)劃將矩形ABCD區(qū)域設(shè)計(jì)為可推拉的窗口.

(1)若窗口ABCD為正方形,且面積大于 m2(木條寬度忽略不計(jì)),求四根木條總長(zhǎng)的取值范圍;
(2)若四根木條總長(zhǎng)為6m,求窗口ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C的極坐標(biāo)方程是ρ=2sinθ,直線l的參數(shù)方程是 (t為參數(shù)).設(shè)直線l與x軸的交點(diǎn)是M,N是曲線C上一動(dòng)點(diǎn),求MN的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1=3.D是線段BC的中點(diǎn).

(1)求直線DB1與平面A1C1D所成角的正弦值;
(2)求二面角B1﹣A1D﹣C1的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P0,﹣1)是橢圓C1+=1ab0)的一個(gè)頂點(diǎn),C1的長(zhǎng)軸是圓C2x2+y2=4的直徑,l1l2是過(guò)點(diǎn)P且互相垂直的兩條直線,其中l1交圓C2A、B兩點(diǎn),l2交橢圓C1于另一點(diǎn)D

1)求橢圓C1的方程;

2)求△ABD面積的最大值時(shí)直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某茶樓有四類茶飲,假設(shè)為顧客準(zhǔn)備泡茶工具所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,經(jīng)統(tǒng)計(jì)以往為100位顧客準(zhǔn)備泡茶工具所需的時(shí)間(t),結(jié)果如下:

類別

鐵觀音

龍井

金駿眉

大紅袍

顧客數(shù)(人)

20

30

40

10

時(shí)間t(分鐘/人)

2

3

4

6

注:服務(wù)員在準(zhǔn)備泡茶工具時(shí)的間隔時(shí)間忽略不計(jì),并將頻率視為概率.
(1)求服務(wù)員恰好在第6分鐘開(kāi)始準(zhǔn)備第三位顧客的泡茶工具的概率;
(2)用X表示至第4分鐘末已準(zhǔn)備好了工具的顧客人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=|3x﹣1|+ax+3,a∈R.
(1)若a=1,解不等式f(x)≤4;
(2)若函數(shù)f(x)有最小值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班主任對(duì)全班50名學(xué)生的學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

分類

積極參加

班級(jí)工作

不太主動(dòng)參

加班級(jí)工作

總計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性一般

6

19

25

總計(jì)

24

26

50

(1)如果隨機(jī)抽查這個(gè)班的一名學(xué)生,那么抽到積極參加班級(jí)工作的學(xué)生的概率是多少?抽到不太主動(dòng)參加班級(jí)工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?

(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對(duì)待班級(jí)工作的態(tài)度是否有關(guān),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行了分析研究,分別記錄了2016年12月1日至12月5日每天的晝夜溫差以及實(shí)驗(yàn)室100顆種子中的發(fā)芽數(shù),得到的數(shù)據(jù)如下表所示:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x/℃

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取兩組,用剩下的三組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的兩組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的兩組數(shù)據(jù)恰好是不相鄰的兩天數(shù)據(jù)的概率.

(2)若選取的是12月1日和12月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.

(3)由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2,則認(rèn)為得到的線性回歸方程是可靠的,據(jù)此說(shuō)明(2)中所得線性回歸方程是否可靠?并估計(jì)當(dāng)溫差為9 ℃時(shí),100顆種子中的發(fā)芽數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案