【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的維修費用(萬元)有如下統(tǒng)計資料:
/年 | 2 | 3 | 4 | 5 | 6 |
/萬元 |
若由資料知, 對呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計使用年限為10年時,維修費用約是多少?
參考公式:回歸直線方程: .其中
(注: )
【答案】(1);(2)12.38
【解析】試題分析: 先把數(shù)據(jù)列表,由題中所給的數(shù)據(jù)求出, ,根據(jù)最小二乘法做出線性回歸方程的系數(shù),再根據(jù)樣本中心點一定在線性回歸方程上,求出的值,從而得到線性回歸方程; 由取,計算出對應(yīng)的的值,即使估計使用年限為年時,維修費的估計值
解析:(1)先把數(shù)據(jù)列表如下.
i | 1 | 2 | 3 | 4 | 5 | ∑ |
xi | 2 | 3 | 4 | 5 | 6 | 20 |
yi | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 | 25 |
xiyi | 4.4 | 11.4 | 22.0 | 32.5 | 42.0 | 112.3 |
x | 4 | 9 | 16 | 25 | 36 | 90 |
由表知,=4,=5,由公式可得:
===1.23,=-=5-1.23×4=0.08,
∴回歸方程為=1.23x+0.08.
(2)由回歸方程=1.23x+0.08知,當(dāng)x=10時,
=1.23×10+0.08=12.38(萬元).
故估計使用年限為10年時維修費用是12.38萬元.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),a∈R
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)x≥1時,f(x)≤ 恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為調(diào)查高二學(xué)生上學(xué)路程所需要的時間(單位:分鐘),從高二年級學(xué)生中隨機(jī)抽取名按上學(xué)所需要時間分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
()根據(jù)圖中數(shù)據(jù)求的值.
()若從第, , 組中用分層抽樣的方法抽取名新生參與交通安全問卷調(diào)查,應(yīng)從第, , 組各抽取多少名新生?
()在()的條件下,該校決定從這名學(xué)生中隨機(jī)抽取名新生參加交通安全宣傳活動,求第組至少有一志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當(dāng)t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x2﹣2ax+b|(x∈R),給出下列命題:
①a∈R,使f(x)為偶函數(shù);
②若f(0)=f(2),則f(x)的圖象關(guān)于x=1對稱;
③若a2﹣b≤0,則f(x)在區(qū)間[a,+∞)上是增函數(shù);
④若a2﹣b﹣2>0,則函數(shù)h(x)=f(x)﹣2有2個零點.
其中正確命題的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個頂點為,半焦距為,離心率,又直線交橢圓于, 兩點,且為中點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求弦的長;
(3)若點恰好平分弦,求實數(shù);
(4)若滿足,求實數(shù)的取值范圍并求的值;
(5)設(shè)圓與橢圓相交于點與點,求的最小值,并求此時圓的方程;
(6)若直線是圓的切線,證明的大小為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣mx+m,m∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若f(x)≤0在x∈(0,+∞)上恒成立,求實數(shù)m的取值范圍.
(3)在(2)的條件下,任意的0<a<b, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,已知直線l:x+y+a=0與點A(0,2),若直線l上存在點M滿足|MA|2+|MO|2=10(O為坐標(biāo)原點),則實數(shù)a的取值范圍是( )
A.(﹣ ﹣1, ﹣1)
B.[﹣ ﹣1, ﹣1]
C.(﹣2 ﹣1,2 ﹣1)
D.[﹣2 ﹣1,2 ﹣1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若集合A={x|x2<2x},集合B={x|x< },則A∩(RB)等于( )
A.(﹣2, ]
B.(2,+∞)
C.(﹣∞, ]
D.D[ ,2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com