【題目】據(jù)某氣象中心觀察和預(yù)測(cè):發(fā)生于M地的沙塵暴一直向正南方向移動(dòng),其移動(dòng)速度v(km/h)與時(shí)間t(h)的函數(shù)圖象如圖所示.過線段OC上一點(diǎn)T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即時(shí)間t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).
(1)當(dāng)t=4時(shí),求s的值;
(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場(chǎng)沙塵暴是否會(huì)侵襲到N城,如果會(huì),在沙塵暴發(fā)生后多長時(shí)間它將侵襲到N城?如果不會(huì),請(qǐng)說明理由.
【答案】(1)24;(2);(3)沙塵暴發(fā)生30 h后將侵襲到N城.
【解析】試題分析:(1)先求出線段OA的解析式為v=4t,然后把t=10直接代入求出此時(shí)的速度,即可求出S(t)的值;(2)先分段求出速度v與時(shí)間t的函數(shù)函數(shù)關(guān)系,再分別乘以時(shí)間即可求得對(duì)應(yīng)的函數(shù)S(t)的解析式;(3)先由分段函數(shù)的解析式以及對(duì)應(yīng)的定義域可以求得其最大值,發(fā)現(xiàn)其最大值大于650,即可下結(jié)論會(huì)侵襲到N城,再把S(t)=650代入即可求出對(duì)應(yīng)的t.
試題解析:解:(1)由圖像可知,當(dāng)t=4時(shí),v=3×4=12,
所以S=×4×12=24 km.
(2)當(dāng)0≤t≤10時(shí),S=·t·3t=;
當(dāng)10<t≤20時(shí),S=×10×30+30(t-10)=30t-150;
當(dāng)20<t≤35時(shí),S=×10×30+10×30+(t-20)×30-×(t-20)×2(t-20)=.
綜上可知, .
(3)因?yàn)楫?dāng)t∈[0,10]時(shí),Smax=×102=150<650,
當(dāng)t∈(10,20]時(shí),Smax=30×20-150=450<650,
所以當(dāng)t∈(20,35]時(shí),令,解得.因?yàn)?/span>20<t≤35,所以t=30.
故沙塵暴發(fā)生30 h后將侵襲到N城.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年1曰8日,中共中央、國務(wù)院隆重舉行國家科學(xué)技術(shù)獎(jiǎng)勵(lì)大會(huì),在科技界引發(fā)熱烈反響,自主創(chuàng)新正成為引領(lǐng)經(jīng)濟(jì)社會(huì)發(fā)展的強(qiáng)勁動(dòng)力.某科研單位在研發(fā)新產(chǎn)品的過程中發(fā)現(xiàn)了一種新材料,由大數(shù)據(jù)測(cè)得該產(chǎn)品的性能指標(biāo)值與這種新材料的含量(單位:克)的關(guān)系為:當(dāng)時(shí), 是的二次函數(shù);當(dāng)時(shí), .測(cè)得數(shù)據(jù)如表(部分)
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)其函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)及函數(shù)(a,b,c∈R),若a>b>c且a+b+c=0.
(1)證明:f(x)的圖像與g(x)的圖像一定有兩個(gè)交點(diǎn);
(2)請(qǐng)用反證法證明:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, )為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為.
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在實(shí)數(shù)a,使得不等式f(x)≥1﹣a+2|2+x|成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)α∈R,n∈[0,2],向量 =(2n+3cosα,n﹣3sinα)的長度不超過6的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限(年)和所支出的維修費(fèi)用(萬元)有如下統(tǒng)計(jì)資料:
/年 | 2 | 3 | 4 | 5 | 6 |
/萬元 |
若由資料知, 對(duì)呈線性相關(guān)關(guān)系,試求:
(1)回歸直線方程;
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?
參考公式:回歸直線方程: .其中
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長,則下列結(jié)論正確的是______(寫出所有正確結(jié)論的序號(hào))
①對(duì)任意的x∈(-∞,1),都有f(x)>0;
②存在x∈R,使ax,bx,cx不能構(gòu)成一個(gè)三角形的三條邊長;
③若△ABC是頂角為120°的等腰三角形,則存在x∈(1,2),使f(x)=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在處的切線方程;
(2)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),求證:對(duì)于任意的 ,均有.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com