過圓
外一點
,作圓的割線,求割線被圓截得的弦的中點的軌跡方程.
設(shè)
為軌跡上任意一點,割線的方程為
.
由
得
.
.
又
,消去
,得
.
由
,即
,
得
,
.
故所求軌跡方程為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若動圓與圓(
x-2)
2+
y2=1外切,又與直線
x+1=0相切,則動圓圓心的軌跡方程是
( )
A.y2=8x | B.y2=-8x | C.y2=4x | D.y2=-4x |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,給出定點
和直線
,
是直線
上的動點,
的角平分線交
于點
,求
的軌跡方程,并討論方程表示的曲線類型與
值的關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
兩條直線
,
分別過點
,
(
為常數(shù)),且分別繞
,
旋轉(zhuǎn),它們分別交
軸于
,
(
,
為參數(shù)),若
,求兩直線交點
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線
的焦點為
是拋物線上橫坐標(biāo)為
,且位于
軸上方的點,
到拋物線準(zhǔn)線的距離等于
.過
作
垂直于
軸,垂足為
,
的中點為
.
(1)
求拋物線方程;
(2) 過
作
,垂足為
,求點
的坐標(biāo);
(3) 以
為圓心,
為半徑作圓
.當(dāng)
是
軸上一動點
時,討論直線
與圓
的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是長軸為4的橢圓上的三點,點
是長軸的一個頂點,
過橢圓中心
(如圖),且
,
(I)求橢圓的方程;
(Ⅱ)如果橢圓上的兩點
,使
的平分線垂直于
,是否總存在實數(shù)
,使
。請給出證明。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
A,B是拋物線
上的兩個動點,
為坐標(biāo)原點,非零向量
滿足
.
(Ⅰ)求證:直線
經(jīng)過一定點;
(Ⅱ)當(dāng)
的中點到直線
的距離的最小值為
時,求
的值.
查看答案和解析>>