【題目】在①;②,這兩個(gè)條件中任選一個(gè),補(bǔ)充在下面問(wèn)題中,然后解答補(bǔ)充完整的題目.

中,內(nèi)角的對(duì)邊分別為,設(shè)的面積為,已知 .

1)求的值;

2)若,求的值.

注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.

【答案】1)見(jiàn)解析(2

【解析】

1)如果選擇條件①,用余弦定理和三角形面積公式化簡(jiǎn)即得的值;如果選擇條件②,利用正弦定理化簡(jiǎn)得,再求的值;(2)如果選擇條件①,先求出,代入即得解;如果選擇條件②,求出,再利用余弦定理即得解.

1)選擇條件①:

由題意得.

整理可得,

.所以,所以.

選擇條件②:

因?yàn)?/span>,

由正弦定理得

,

中,,所以,

,所以

2)如果選擇①,由,得,又

,解得.

代入中,

,

解得.

如果條件②:,解得,又a=10,

所以,所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】由于濃酸泄漏對(duì)河流形成了污染,現(xiàn)決定向河中投入固體堿,1個(gè)單位的固體堿在水中逐步溶化,水中的堿濃度與時(shí)間的關(guān)系,可近似地表示為,只有當(dāng)河流中堿的濃度不低于1時(shí),才能對(duì)污染產(chǎn)生有效的抑制作用.

1)如果只投放1個(gè)單位的固體堿,則能夠維持有效抑制作用的時(shí)間有多長(zhǎng)?

2)當(dāng)河中的堿濃度開(kāi)始下降時(shí),即刻第二次投放1個(gè)單位的固體堿,此后,每一時(shí)刻河中的堿濃度認(rèn)為是各次投放的堿在該時(shí)刻相應(yīng)的堿濃度的和,求河中堿濃度可能取得的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次考試后,對(duì)全班同學(xué)的數(shù)學(xué)成績(jī)進(jìn)行整理,得到表:

分?jǐn)?shù)段

人數(shù)

5

15

20

10

將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計(jì)出本次考試成績(jī)的中位數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)在點(diǎn)處的切線平行于直線,求切點(diǎn)的坐標(biāo)及此切線方程;

2)求證:當(dāng)時(shí),;(其中

3)確定非負(fù)實(shí)數(shù)的取值范圍,使得,成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(1)求函數(shù)的極值;

(2)對(duì),不等式都成立,求整數(shù)k的最大值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市新上一種瓶裝洗發(fā)液,為了打響知名度,舉行為期六天的低價(jià)促銷活動(dòng),隨著活動(dòng)的有效開(kāi)展,第六天該超市對(duì)前五天中銷售的洗發(fā)液進(jìn)行統(tǒng)計(jì),y表示第x天銷售洗發(fā)液的瓶數(shù),得到統(tǒng)計(jì)表格如下:

x

1

2

3

4

5

y

4

6

10

15

20

1)若yx具有線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程,并預(yù)測(cè)第六天銷售該洗發(fā)液的瓶數(shù)(按四舍五入取到整數(shù));

2)超市打算第六天加大活動(dòng)力度,購(gòu)買(mǎi)洗發(fā)液可參加抽獎(jiǎng),中獎(jiǎng)?wù)呖深I(lǐng)取獎(jiǎng)金20元,中獎(jiǎng)概率為,已知甲、乙兩名顧客抽獎(jiǎng)中獎(jiǎng)與否相互獨(dú)立,求甲、乙所獲得獎(jiǎng)金之和X的分布列及數(shù)學(xué)期望.

參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為正三角形,分別是的中點(diǎn),,則球的體積為_________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分13分如圖,在直角坐標(biāo)系,的頂點(diǎn)是原點(diǎn)始邊與軸正半軸重合終邊交單位圓于點(diǎn),將角的終邊按逆時(shí)針?lè)较蛐D(zhuǎn),交單位圓于點(diǎn),

1,;

2分別過(guò)軸的垂線,垂足依次為,的面積為,的面積為,求角的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)且 )曲線的參數(shù)方程為為參數(shù),且),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為: ,曲線的極坐標(biāo)方程為.

(1)求的交點(diǎn)到極點(diǎn)的距離;

(2)設(shè)交于點(diǎn),交于點(diǎn),當(dāng)上變化時(shí),求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案