【題目】某次考試后,對全班同學的數(shù)學成績進行整理,得到表:

分數(shù)段

人數(shù)

5

15

20

10

將以上數(shù)據(jù)繪制成頻率分布直方圖后,可估計出本次考試成績的中位數(shù)是__________

【答案】115

【解析】

由表格中數(shù)據(jù)可知各分數(shù)段的學生數(shù)學成績的頻率,即直方圖中每個矩形的面積,而中位數(shù)左側(cè)的所有小矩形的面積之和應為0.5,進而求解即可.

由題意可知,直方圖每個矩形的面積表示對應的頻率,直方圖四個矩形的面積從左向右依次為0.1,0.3,0.4,0.2,由于中位數(shù)左側(cè)的矩形面積之和為0.5,故中位數(shù)位于第3個矩形處,而前2個矩形面積之和為0.4,故第3個矩形在中位數(shù)左側(cè)的面積為0.1,

故中位數(shù)為區(qū)間的最靠左的四等分點處,故中位數(shù)為115.

故答案為:115.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知 (,且為常數(shù)).

(1)求的單調(diào)區(qū)間;

(2)若在區(qū)間內(nèi),存在時,使不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為2的菱形,底面.

1)求證:平面

2)若,直線與平面所成的角為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)其中.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)已知當其中是自然對數(shù)時,在上至少存在一點,使成立,求的取值范圍;

(3)求證:當時,對任意, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) (其中為自然對數(shù)的底數(shù)),若函數(shù)有4個零點,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2017雙節(jié)期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調(diào)查,將他們在某段高速公路的車速分成六段: , , , , , 后得到如圖的頻率分布直方圖.

(1)調(diào)查公司在采樣中,用到的是什么抽樣方法?

(2)求這40輛小型車輛車速的眾數(shù)、中位數(shù)及平均數(shù)的估計值;

(3)若從車速在的車輛中任抽取2輛,求車速在的車輛至少有一輛的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線上一點的縱坐標為4,且點到焦點的距離為5.

(1)求拋物線的方程;

(2)設(shè)斜率為的兩條平行直線分別經(jīng)過點,如圖. 與拋物線交于兩點, 與拋 物線兩點.問:是否存在實數(shù),使得四邊形的面積為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)當時,求曲線在點處的切線方程;

(2)當時,判斷方程在區(qū)間上有無實根;

(3)若時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知等腰直角三角形的斜邊所在直線方程為,其中點在點上方,直角頂點的坐標為

(1)求邊上的高線所在直線的方程;

(2)求等腰直角三角形的外接圓的標準方程;

(3)分別求兩直角邊所在直線的方程.

查看答案和解析>>

同步練習冊答案