如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的
直線與橢圓相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設橢圓的左頂點為A,下頂點為B,動點P滿足
)試求點P的軌跡方程,使點B關于該軌跡的對稱點落在橢圓上.

(Ⅰ). …………………6分
(Ⅱ)滿足條件的點P的軌跡方程為.…………………14分

(Ⅰ)∵軸,∴,由橢圓的定義得:, ……………2分
,∴,
   ∴     ………………4分
,∴所求橢圓C的方程為. …………………6分
(Ⅱ)由(Ⅰ)知點A(-2,0),點B為(0,-1),設點P的坐標為
,, 由-4得-,
∴點P的軌跡方程為     …………………8分
設點B關于P的軌跡的對稱點為,則由軸對稱的性質(zhì)可得:,
解得:,…………………10分
∵點在橢圓上,

整理得解得 …………………12分
∴點P的軌跡方程為,經(jīng)檢驗都符合題設,
∴滿足條件的點P的軌跡方程為.…………………14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

直線與坐標軸的交點分別是一個橢圓的焦點和頂點,則此橢圓的離心率為 。ā  。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)如圖,過橢圓的左焦點x軸的垂線交橢圓于點P,點A和點B分別為橢圓的右頂點和上頂點,OPAB
(1)求橢圓的離心率e(2)過右焦點作一條弦QR,使QRAB.若△的面積為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設橢圓的離心率為=,點是橢圓上的一點,且點到橢圓兩焦點的距離之和為4.
(1)求橢圓的方程;
(2)橢圓上一動點關于直線的對稱點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C過點是橢圓的左焦點,P、Q是橢圓C上的兩個動點,且|PF|、|MF|、|QF|成等差數(shù)列。
(1)求橢圓C的標準方程;
(2)求證:線段PQ的垂直平分線經(jīng)過一個定點A;
(3)設點A關于原點O的對稱點是B,求|PB|的最小值及相應點P的坐標。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

橢圓被直線截得的弦長為                   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,是橢圓上的一點,是橢圓的左焦點,且,則點到該橢圓左準線的距離為____________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

給定四條曲線:①x2+y2=;②+=1;?③x2+=1;④+y2=1.其中與直線x+y-5=0僅有一個交點的曲線是(   )
A.①②③B.②③④C.①②④D.①③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

F1、F2是橢圓+y2=1的左、右焦點,點P在橢圓上運動,則|PF1|·|PF2|的最大值是_________________.

查看答案和解析>>

同步練習冊答案