下列命題中錯誤的是( ).
A.若,則
B.若,則
C.若,,,則
D.若,=AB,//,AB,則
B
,則,而,所以,命題A正確;
兩個平面垂直,則一個平面內(nèi)垂直于兩個平面交線垂直于另外一個平面。,則相交,命題B不正確;
設(shè),由可得,若存在,則。因為,所以。因為相交,所以相交(若,則,從而可得,矛盾),所以,命題C正確;
,則存在使得,因為,所以。再由可得。因為,所以,命題D正確。
故選B
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)是兩條不同的直線,是兩個不同的平面,則下列命題中的假命題是
A.若B.若
C.若D.若

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,正方體棱長為1,點,且,有以下四個結(jié)論:
,②;③.;④MN與是異面直線、其中正確結(jié)論的序號是________ (注:把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖所示的幾何體是由以正三角形為底面的直棱柱
被平面所截而得. ,的中點.
(Ⅰ)當時,求平面與平面的夾角的余弦值;
(Ⅱ)當為何值時,在棱上存在點,使平面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)
如圖所示,在棱長為2的正方體中,點分別在棱上,滿足,
.
(1)試確定、兩點的位置.
(2)求二面角大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共13分)如圖,矩形ABCD中,平面ABE,BE=BC,F(xiàn)為CE上的點,且平面ACE。

(1)求證:平面BCE;
(2)求證:AE//平面BFD。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

四面體中,中點,中點,,則直
所成的角大小為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知斜三棱柱,,,在底面上的射影恰為的中點,又知.

(Ⅰ)求證:平面;    
(Ⅱ)求到平面的距離;
(Ⅲ)求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在三棱柱中,側(cè)面,且與底面成角,,則該棱柱體積的 最小值為          . 

查看答案和解析>>

同步練習冊答案