【題目】如圖,在斜三棱柱ABC﹣A1B1C1中,側面ACC1A1與側面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(1)求證:AB1⊥CC1;
(2)若 ,求二面角C﹣AB1﹣A1的正弦值.
【答案】
(1)證明:連接AC1,CB1,則△ACC1和△BCC1皆為正三角形.
取CC1的中點O,連接OA,OB1,則CC1⊥OA,CC1⊥OB1,
又OA∩OB1=O,所以CC1⊥平面OAB1.
又AB1平面OAB1,所以CC1⊥AB1
(2)解:由(1)知, ,又 ,所以OA⊥OB1.
如圖所示,以O為原點,以OB1,OC1,OA所在直線為x軸,y軸,z軸建立空間直角坐標系,
則 ,
設平面CAB1的一個法向量為 ,
因為 ,
所以 取 .
設平面A1AB1的一個法向量為 ,
因為 ,
所以 取 .
則 ,
∴sin< >= = .
所以二面角C﹣AB1﹣A1的正弦值是 .
【解析】(1)連接AC1 , CB1 , 取CC1的中點O,則CC1⊥OA,CC1⊥OB1 , 從而CC1⊥平面OAB1 . 由此能證明CC1⊥AB1 . (2)以O為原點,以OB1 , OC1 , OA所在直線為x軸,y軸,z軸建立空間直角坐標系,利用向量法能求出二面角C﹣AB1﹣A1的正弦值.
【考點精析】本題主要考查了空間中直線與直線之間的位置關系的相關知識點,需要掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)且是定義域為R的奇函數(shù).
求k值;
若,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若,且在上的最小值為,求m的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以雙曲線 (a>0,b>0)上一點M為圓心的圓與x軸恰相切于雙曲線的一個焦點F,且與y軸交于P、Q兩點.若△MPQ為銳角三角形,則該雙曲線的離心率e的范圍是( )
A.
B.( , )
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 ,方程f(x)=0有3個不同的根.
(1)求實數(shù)m的取值范圍;
(2)是否存在實數(shù)m,使得f(x)在(0,1)上恰有兩個極值點x1 , x2且滿足x2=2x1 , 若存在,求實數(shù)m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的偶函數(shù),對于,都有,當時,,若在[-1,5]上有五個根,則此五個根的和是( )
A. 7 B. 8 C. 10 D. 12
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)已知點為拋物線的焦點,點在拋物線上,且.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com