【題目】如圖,在斜三棱柱ABC﹣A1B1C1中,側面ACC1A1與側面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.

(1)求證:AB1⊥CC1;
(2)若 ,求二面角C﹣AB1﹣A1的正弦值.

【答案】
(1)證明:連接AC1,CB1,則△ACC1和△BCC1皆為正三角形.

取CC1的中點O,連接OA,OB1,則CC1⊥OA,CC1⊥OB1

又OA∩OB1=O,所以CC1⊥平面OAB1

又AB1平面OAB1,所以CC1⊥AB1


(2)解:由(1)知, ,又 ,所以OA⊥OB1

如圖所示,以O為原點,以OB1,OC1,OA所在直線為x軸,y軸,z軸建立空間直角坐標系,

設平面CAB1的一個法向量為 ,

因為

所以

設平面A1AB1的一個法向量為

因為

所以

,

∴sin< >= =

所以二面角C﹣AB1﹣A1的正弦值是


【解析】(1)連接AC1 , CB1 , 取CC1的中點O,則CC1⊥OA,CC1⊥OB1 , 從而CC1⊥平面OAB1 . 由此能證明CC1⊥AB1 . (2)以O為原點,以OB1 , OC1 , OA所在直線為x軸,y軸,z軸建立空間直角坐標系,利用向量法能求出二面角C﹣AB1﹣A1的正弦值.
【考點精析】本題主要考查了空間中直線與直線之間的位置關系的相關知識點,需要掌握相交直線:同一平面內(nèi),有且只有一個公共點;平行直線:同一平面內(nèi),沒有公共點;異面直線: 不同在任何一個平面內(nèi),沒有公共點才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是定義域為R的奇函數(shù).

k值;

,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;

,且上的最小值為,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓+=1的焦點分別是、, 是橢圓上一點,若連結、三點恰好能構成直角三角形,則點軸的距離是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以雙曲線 (a>0,b>0)上一點M為圓心的圓與x軸恰相切于雙曲線的一個焦點F,且與y軸交于P、Q兩點.若△MPQ為銳角三角形,則該雙曲線的離心率e的范圍是( )
A.
B.( ,
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(α)=

(1)化簡f(α);

(2)α是第三象限角,cos(α)=,求f(α);

(3)α=-1860°,求f(α).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,方程f(x)=0有3個不同的根.
(1)求實數(shù)m的取值范圍;
(2)是否存在實數(shù)m,使得f(x)在(0,1)上恰有兩個極值點x1 , x2且滿足x2=2x1 , 若存在,求實數(shù)m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的偶函數(shù),對于,都有,當時,,若在[-1,5]上有五個根,則此五個根的和是( )

A. 7 B. 8 C. 10 D. 12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知角α終邊逆時針旋轉 與單位圓交于點 ,且
(1)求 的值,
(2)求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)已知點為拋物線的焦點,點在拋物線上,且

)求拋物線的方程;

)已知點,延長交拋物線于點,證明:以點為圓心且與直線相切的圓,必與直線相切.

查看答案和解析>>

同步練習冊答案