【題目】已知角α終邊逆時針旋轉(zhuǎn) 與單位圓交于點 ,且
(1)求 的值,
(2)求 的值.

【答案】
(1)解:角α終邊逆時針旋轉(zhuǎn) 與單位圓交于點 ,

可得sin( )= ,

cos( )=

sin(2 )=2sin( )cos( )= = ,

cos(2 )=2× =

=sin(2 )=sin(2 )cos ﹣sin cos(2 )= =


(2)解:∵ ,∴tan(2α+2β)= = =

sin(2 )= ,

cos(2 )=

tan(2 )=

tan(2α+2β)=tan[( )+(2 )]= = ,

解得 =


【解析】(1)利用已知條件求出sin( )與cos( ),然后利用二倍角公式以及兩角和的正弦函數(shù)化簡求解即可.(2)求出正切函數(shù)的二倍角的值,利用兩角和的正切函數(shù)化簡求解即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)在公比為2的等比數(shù)列{an}中,a2與a5的等差中項是9 .求a1的值;
(2)若函數(shù)y=a1sin( φ),0<φ<π的一部分圖象如圖所示,M(﹣1,a1),N(3,﹣a1)為圖象上的兩點,設(shè)∠MON=θ,其中O為坐標原點,0<θ<π,求cos(θ﹣φ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱ABC﹣A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.

(1)求證:AB1⊥CC1;
(2)若 ,求二面角C﹣AB1﹣A1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于點D.

(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=3,延長CE交AB于點F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=3,AC=4,N是AB的中點,邊AC(含端點)上存在點M,使得BM⊥CN,則cosA的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某房地產(chǎn)開發(fā)公司計劃在一樓區(qū)內(nèi)建造一個長方形公園ABCD,公園由形狀為長方形A1B1C1D1的休閑區(qū)和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10(如圖所示)

(1)若設(shè)休閑區(qū)的長和寬的比x(x>1),求公園ABCD所占面積S關(guān)于x的函數(shù)S(x)的解析式;

(2)要使公園所占面積最小,則休閑區(qū)A1B1C1D1的長和寬該如何設(shè)計?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)若ax>lnx恒成立,求實數(shù)a的取值范圍;
(2)證明:a>0,x0∈R,使得當x>x0時,ax>lnx恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖放置的邊長為2的正三角形沿軸滾動, 設(shè)頂點的縱坐標與橫坐標的函數(shù)關(guān)系式是, 有下列結(jié)論:

①函數(shù)的值域是;②對任意的,都有;

③函數(shù)是偶函數(shù);④函數(shù)單調(diào)遞增區(qū)間為.

其中正確結(jié)論的序號是________. (寫出所有正確結(jié)論的序號)

說明:

“正三角形沿軸滾動”包括沿軸正方向和沿軸負方向滾動. 沿軸正方向滾動指的是先以頂點為中心順時針旋轉(zhuǎn), 當頂點落在軸上時, 再以頂點為中心順時針旋轉(zhuǎn), 如此繼續(xù). 類似地, 正三角形可以沿軸負方向滾動.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè) 為實數(shù),且,

(I)求方程的解;

(II)若滿足,求證:①;

(III)在(2)的條件下,求證:由關(guān)系式所得到的關(guān)于的方程存在,使

查看答案和解析>>

同步練習(xí)冊答案