【題目】已知f(α)=
(1)化簡f(α);
(2)若α是第三象限角,且cos(α-)=,求f(α);
(3)若α=-1860°,求f(α).
【答案】(1)-cosα(2)(3)
【解析】
(1)利用誘導公式化簡即可得到結果;(2)由α是第二象限角及sinα的值,利用同角三角函數(shù)間的基本關系求出cosα的值,所求式子利用誘導公式化簡后,代入計算即可;(3)將α的度數(shù)代入f(α)中利用誘導公式計算即可.
解:(1)f(α)==-cosα
(2)由cos(α-)=得cos(α+)=,∴sinα=-.
又∵α是第三象限角,∴cosα=-.∴f(α)=-cosα=
(3)當α=-1860°時,f(α)=-cosα=-cos(-1860°)=-cos1860°=-cos(5×360°+60°)=-cos60°=-.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 : ( )的左、右焦點分別為 , ,其離心率為 ,短軸端點與焦點構成四邊形的面積為 .
(1)求橢圓 的方程;
(2)若過點 的直線 與橢圓 交于不同的兩點 、 , 為坐標原點,當 時,試求直線 的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)恰有兩個不相同的零點,求實數(shù)的值;
(2)記為函數(shù)的所有零點之和,當時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),給出下列結論:
(1)若對任意,且,都有,則為R上減函數(shù);
(2) 若為R上的偶函數(shù),且在內是減函數(shù), (-2)=0,則>0解集為(-2,2);
(3)若為R上的奇函數(shù),則也是R上的奇函數(shù);
(4)若一個函數(shù)定義域且的奇函數(shù),當時,,則當x<0時,其中正確的是____________________
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐A﹣BCD中,AB、AC、AD兩兩垂直且長度均為10,定長為 的線段MN的一個端點M在棱AB上運動,另一個端點N在△ACD內運動(含邊界),線段MN的中點P的軌跡的面積為2π,則m的值等于 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在斜三棱柱ABC﹣A1B1C1中,側面ACC1A1與側面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(1)求證:AB1⊥CC1;
(2)若 ,求二面角C﹣AB1﹣A1的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高中有高一新生500名,分成水平相同的兩類教學實驗,為對比教學效果,現(xiàn)用分層抽樣的方法從兩類學生中分別抽取了40人,60人進行測試
(1)求該學校高一新生兩類學生各多少人?
(2)經過測試,得到以下三個數(shù)據圖表:
圖1:75分以上兩類參加測試學生成績的莖葉圖
圖2:100名測試學生成績的頻率分布直方圖
下圖表格:100名學生成績分布表:
①先填寫頻率分布表中的六個空格,然后將頻率分布直方圖(圖2)補充完整;
②該學校擬定從參加考試的79分以上(含79分)的類學生中隨機抽取2人代表學校參加市比賽,求抽到的2人分數(shù)都在80分以上的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=|x﹣4|,g(x)=|2x+1|.
(1)解不等式f(x)<g(x);
(2)若2f(x)+g(x)>ax對任意的實數(shù)x恒成立,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com