雙曲線上一點到左,右兩焦點距離的差為2.
(1)求雙曲線的方程;
(2)設是雙曲線的左右焦點,是雙曲線上的點,若,
的面積;
(3)過作直線交雙曲線兩點,若,是否存在這樣的直線,使為矩形?若存在,求出的方程,若不存在,說明理由.
(1)  
(2)  妨設在第一象限,則

(3)若直線斜率存在,設為,代入

若平行四邊形為矩形,則
無解
若直線垂直軸,則不滿足.
故不存在直線,使為矩形.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

P為雙曲線上的一點,F1F2是該雙曲線的兩個焦點,若,則△PF1F2的面積為( )
A.B.12C.12D.24

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知正方體ABCD-A1B1C1D1,平面BB1C1C內到直線AA1和直線BC距離相等的點的軌跡是
A.圓    8.橢圓     C.雙曲線    D.拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

.已知雙曲線的一個焦點與拋物線的焦點重合,且該雙曲線的離心率為,則該雙曲線的漸近線方程為
A.2B.4C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(15分)(1)求以為漸近線,且過點的雙曲線的方程;
(2)求以雙曲線的頂點為焦點,焦點為頂點的橢圓的方程;
(3)橢圓上有兩點,為坐標原點,若直線斜率之積為,求證: 為定值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線(>0, >0)的離心率為2,一個焦點與拋物線的焦點相同,則雙曲線的方程為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

焦點為經(jīng)過點的雙曲線的標準方程是               .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

平分雙曲線的一條弦,則這條弦所在的直線方程是 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,為雙曲線左,右焦點,以雙曲線右支上任意一點P為圓心,以為半徑的圓與以為圓心,為半徑的圓內切,則雙曲線兩條漸近線的夾角是

查看答案和解析>>

同步練習冊答案