【題目】已知函數(shù).

1)當時,求的極值;

2)設(shè),對任意都有成立,求實數(shù)的取值范圍.

【答案】1的極大值為,無極小值;(2.

【解析】

1)把代入,然后求出函數(shù)的定義域,對函數(shù)求導,結(jié)合導數(shù)與單調(diào)性的關(guān)系可求函數(shù)的極值,

2,根據(jù)已知可轉(zhuǎn)化為,結(jié)合導數(shù)進行求解.

1)當時,,所以函數(shù)的定義域為,

所以,且,

,

所以當時,,

所以.

,

所以當時,,

所以上單調(diào)遞減,故.

同理當時,;

時,,

所以是單調(diào)遞增,在單調(diào)遞減,

所以當時,的極大值為,無極小值.

2)令,

因為對任意都有成立,

所以.

因為,

所以.

,即,解得;

,即,解得.

所以上單調(diào)遞減,在上單調(diào)遞增,

所以.

因為

所以,當

,即,解得;令,即,解得.

所以上單調(diào)遞增,在上單調(diào)遞減,

所以

所以

所以,即實數(shù)的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知m,n為兩條不同的直線,,為兩個不同的平面,則下列命題中正確的有  

,, ,

, ,

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個極值點,,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了拓展城市的旅游業(yè),實現(xiàn)不同市區(qū)間的物資交流,政府決定在市與市之間建一條直達公路,中間設(shè)有至少8個的偶數(shù)個十字路口,記為,現(xiàn)規(guī)劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為.

1)現(xiàn)征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數(shù)據(jù)如下所示:

A市居民

B市居民

喜歡楊樹

300

200

喜歡木棉樹

250

250

是否有的把握認為喜歡樹木的種類與居民所在的城市具有相關(guān)性;

2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求的分布列以及數(shù)學期望;

3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數(shù)為,求證:.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求的極值;

2)若,且,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是⊙的直徑,是⊙的切線,交⊙E,過E的切線與交于D.

(I)求證:;

(II)若,,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中:①若“”是“”的充要條件;

②若“,”,則實數(shù)的取值范圍是;

③已知平面、,直線、,若,,,,則;

④函數(shù)的所有零點存在區(qū)間是.

其中正確的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一項針對某一線城市3050歲都市中年人的消費水平進行調(diào)查,現(xiàn)抽查500名(200名女性,300名男性)此城市中年人,最近一年內(nèi)購買六類高價商品(電子產(chǎn)品、服裝、手表、運動與戶外用品、珠寶首飾、箱包)的金額(萬元)的頻數(shù)分布表如下:

1)將頻率視為概率,估計該城市中年人購買六類高價商品的金額不低于5000元的概率.

2)把購買六類高價商品的金額不低于5000元的中年人稱為高收入人群,根據(jù)已知條件完成22列聯(lián)表,并據(jù)此判斷能否有95%的把握認為高收入人群與性別有關(guān)?

參考公式:,其中

參考附表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)定義:設(shè)是非零實常數(shù),若對于任意的,都有,則稱函數(shù)為“關(guān)于的偶型函數(shù)”

1)請以三角函數(shù)為例,寫出一個“關(guān)于2的偶型函數(shù)”的解析式,并給予證明

2)設(shè)定義域為的“關(guān)于的偶型函數(shù)”在區(qū)間上單調(diào)遞增,求證在區(qū)間上單調(diào)遞減

3)設(shè)定義域為的“關(guān)于的偶型函數(shù)”是奇函數(shù),若,請猜測的值,并用數(shù)學歸納法證明你的結(jié)論

查看答案和解析>>

同步練習冊答案