【題目】下列命題中:①若“”是“”的充要條件;

②若“”,則實(shí)數(shù)的取值范圍是;

③已知平面、、,直線(xiàn)、,若,,,則;

④函數(shù)的所有零點(diǎn)存在區(qū)間是.

其中正確的個(gè)數(shù)是(

A.B.C.D.

【答案】C

【解析】

利用充分條件與必要條件的關(guān)系判斷①的正誤;根據(jù)特稱(chēng)命題成立的等價(jià)條件求實(shí)數(shù)的取值范圍,可判斷②的正誤;由面面垂直的性質(zhì)定理可判斷③的正誤;利用零點(diǎn)存在定理可判斷④的正誤.

①由,可知,所以有,當(dāng)時(shí),滿(mǎn)足,但不成立,所以①錯(cuò)誤;

②要使“”成立,則有對(duì)應(yīng)方程的判別式,即,解得,所以②正確;

③因?yàn)?/span>,,,所以,又,所以根據(jù)面面垂直的性質(zhì)定理知,所以③正確;

④因?yàn)?/span>,且函數(shù)連續(xù),

所以根據(jù)零點(diǎn)存在定理可知在區(qū)間上,函數(shù)存在零點(diǎn),所以④正確.

所以正確的是②③④,共有三個(gè).

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九大以來(lái),某貧困地區(qū)扶貧辦積極貫徹落實(shí)國(guó)家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過(guò)不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭(zhēng)早日脫貧的工作計(jì)劃,該地扶貧辦統(tǒng)計(jì)了2018年位農(nóng)民的年收人并制成如下頻率分布直方圖:

(1)根據(jù)頻率分布直方圖,估計(jì)位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

(2)由頻率分布直方圖,可以認(rèn)為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計(jì)算得.利用該正態(tài)分布,求:

(i)在2019年脫貧攻堅(jiān)工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪(fǎng)了位農(nóng)民。若每個(gè)農(nóng)民的年收人相互獨(dú)立,問(wèn):這位農(nóng)民中的年收入不少于千元的人數(shù)最有可能是多少?

附:參考數(shù)據(jù)與公式

則①;②;③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為邊長(zhǎng)為2的菱形,∠DAB=60°,∠ADP=90°,面ADP⊥面ABCD,點(diǎn)F為棱PD的中點(diǎn).

(1)在棱AB上是否存在一點(diǎn)E,使得AF∥面PCE,并說(shuō)明理由;

(2)當(dāng)二面角D﹣FC﹣B的余弦值為時(shí),求直線(xiàn)PB與平面ABCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求的極值;

2)設(shè),對(duì)任意都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】魯班鎖是中國(guó)傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙.從外觀上看,是嚴(yán)絲合縫的十字立方體,其上下、左右、前后完全對(duì)稱(chēng);六根等長(zhǎng)的正四棱柱分成三組,經(jīng)90°榫卯起來(lái).如圖所示,正四棱柱的高為8,底面正方形的邊長(zhǎng)為1,將這個(gè)魯班鎖放進(jìn)一個(gè)球形容器內(nèi),則該球形容器半徑的最小值為(容器壁的厚度忽略不計(jì))(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為準(zhǔn)備參加市運(yùn)動(dòng)會(huì),對(duì)本校甲、乙兩個(gè)田徑隊(duì)中名跳高運(yùn)動(dòng)員進(jìn)行了測(cè)試,并用莖葉圖表示出本次測(cè)試人的跳高成績(jī)(單位:.跳高成績(jī)?cè)?/span>以上(包括)定義為“合格”,成績(jī)?cè)?/span>以下(不包括)定義為“不合格”.鑒于乙隊(duì)組隊(duì)晚,跳高成績(jī)相對(duì)較弱,為激勵(lì)乙隊(duì)隊(duì)隊(duì),學(xué)校決定只有乙隊(duì)中“合格”者才能參加市運(yùn)動(dòng)會(huì)開(kāi)幕式旗林隊(duì).

1)求甲隊(duì)隊(duì)員跳高成績(jī)的中位數(shù);

2)如果用分層抽樣的方法從甲、乙兩隊(duì)所有的運(yùn)動(dòng)員中共抽取人,則人中“合格”與“不合格”的人數(shù)各為多少;

3)若從所有“合格”運(yùn)動(dòng)員中選取名,用表示所選運(yùn)動(dòng)員中能參加市運(yùn)動(dòng)會(huì)開(kāi)幕式旗林隊(duì)的人數(shù),試求的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定下列四個(gè)命題

若一個(gè)平面內(nèi)的兩條直線(xiàn)與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;

若一條直線(xiàn)和兩個(gè)互相垂直的平面中的一個(gè)平面垂直,那么這條直線(xiàn)一定平行于另一個(gè)平面;

若一條直線(xiàn)和兩個(gè)平行平面中的一個(gè)平面垂直,那么這條直線(xiàn)也和一個(gè)平面垂直;

若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線(xiàn)不垂直的直線(xiàn)與另一個(gè)平面也不垂直,

其中,真命題的個(gè)數(shù)是  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)取得極小值,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列四個(gè)命題:(1)一定存在直線(xiàn),使函數(shù)的圖像與函數(shù)的圖像關(guān)于直線(xiàn)對(duì)稱(chēng);(2)不等式:的解集為;(3)已知數(shù)列的前項(xiàng)和為,則數(shù)列一定是等比數(shù)列;(4)過(guò)拋物線(xiàn)上的任意一點(diǎn)的切線(xiàn)方程一定可以表示為.則正確命題的序號(hào)為_________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案