精英家教網 > 高中數學 > 題目詳情

【題目】已知命題表示雙曲線,命題表示橢圓

若命題為真命題,求實數的取值范圍.

判斷命題為真命題是命題為真命題的什么條件(請用簡要過程說明是充分不必要條件、必要不充分條件、充要條件 既不充分也不必要條件中的哪一個)

【答案】(1)(2)的必要不充分條件.

【解析】

試題(1)因為為雙曲線,而雙曲線方程的特征為項的系數符號相反,所以(2)因為為橢圓,而橢圓方程的特征為項的系數符號為正且不等,所以,即,由于包含,所以的必要不充分條件.利用集合之間包含關系判斷命題充要關系是一個常用且有效的方法.

試題解析:(1)命題表示雙曲線為真命題,則, 3分

; 5分

命題表示橢圓為真命題,, 8分

, 10分

的必要不充分條件. 14分

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知焦點在x軸上的橢圓C1的長軸長為8,短半軸為2,拋物線C2的頂點在原點且焦點為橢圓C1的右焦點.

(1)求拋物線C2的標準方程;

(2)過(1,0)的兩條相互垂直的直線與拋物線C2有四個交點,求這四個點圍成四邊形的面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面上給定相異兩點A,B,設P點在同一平面上且滿足,當時,P點的軌跡是一個圓,這個軌跡最先由古希臘數學家阿波羅尼斯發(fā)現(xiàn),故我們稱這個圓為阿波羅尼斯圓,現(xiàn)有雙曲線,),A,B為雙曲線的左、右頂點,C,D為雙曲線的虛軸端點,動點P滿足面積的最大值為,面積的最小值為4,則雙曲線的離心率為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某小區(qū)有一塊三角形空地,如圖ABC,其中AC=180米,BC=90米,∠C=90°,開發(fā)商計劃在這片空地上進行綠化和修建運動場所,在ABC內的P點處有一服務站(其大小可忽略不計),開發(fā)商打算在AC邊上選一點D,然后過點P和點D畫一分界線與邊AB相交于點E,在ADE區(qū)域內綠化,在四邊形BCDE區(qū)域內修建運動場所. 現(xiàn)已知點P處的服務站與AC距離為10米,與BC距離為100. 米,試問取何值時,運動場所面積最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市環(huán)保部門對該市市民進行了一次動物保護知識的網絡問卷調查,每位市民僅有一次參加機會,通過隨機抽樣,得到參'與問卷調查的100人的得分(滿分:100分)數據,統(tǒng)計結果如表所示:

組別

2

3

5

15

18

12

0

5

10

15

5

10

若規(guī)定問卷得分不低于70分的市民稱為“動物保護關注者”,則山圖中表格可得列聯(lián)表如下:

非“動物保護關注者”

是“動物保護關注者”

合計

10

45

55

15

30

45

合計

25

75

100

1)請判斷能否在犯錯誤的概率不超過005的前提下認為“動物保護關注者”與性別有關?

2)若問卷得分不低于80分的人稱為“動物保護達人”.現(xiàn)在從本次調查的“動物保護達人”中利用分層抽樣的方法隨機抽取6名市民參與環(huán)保知識問答,再從這6名市民中抽取2人參與座談會,求抽取的2名市民中,既有男“動物保護達人”又有女動物保護達人”的概率.

附表及公式:,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】記拋物線的焦點為,點在拋物線上,,斜率為的直線與拋物線交于兩點.

1)求的最小值;

2)若,直線的斜率都存在,且;探究:直線是否過定點,若是,求出定點坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,,,平面平面相交于點.

1)求證:

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(I)時,求過點(0,1)且和曲線相切的直線方程;

(2)若函數上有兩個不同的零點,求實致的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列的前項的和為,公差,若,,成等比數列,;數列滿足:對于任意的,等式都成立.

1)求數列的通項公式;

2)證明:數列是等比數列;

3)若數列滿足,試問是否存在正整數(其中),使,成等比數列.

查看答案和解析>>

同步練習冊答案