【題目】已知.
(1)當(dāng)時,解不等式;
(2)若關(guān)于的方程的解集中恰好有一個元素,求實數(shù)的值;
(3)設(shè),若對任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.
【答案】(1)(2)或,(3)
【解析】
(1)根據(jù)對數(shù)單調(diào)性化簡不等式,再解分式不等式得結(jié)果;
(2)先化簡對數(shù)方程,再根據(jù)分類討論方程根的情況,最后求得結(jié)果;
(3)先確定函數(shù)單調(diào)性,確定最值取法,再化簡不等式,根據(jù)二次函數(shù)單調(diào)性確定最值,解得結(jié)果.
(1)當(dāng)時,
不等式解集為
(2)
①當(dāng)時,僅有一解,滿足題意;
②當(dāng)時,則,
若時,解為,滿足題意;
若時,解為
此時
即有兩個滿足原方程的的根,所以不滿足題意;
綜上,或,
(3)因為在上單調(diào)遞減,所以函數(shù)在區(qū)間上的最大值與最小值的差為,因此
即對任意恒成立,
因為,所以在上單調(diào)遞增,
所以
因此
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為正整數(shù),若兩個項數(shù)都不小于的數(shù)列,滿足:存在正數(shù),當(dāng)且時,都有,則稱數(shù)列,是“接近的”.已知無窮等比數(shù)列滿足,無窮數(shù)列的前項和為,,且,.
(1)求數(shù)列通項公式;
(2)求證:對任意正整數(shù),數(shù)列,是“接近的”;
(3)給定正整數(shù),數(shù)列,(其中)是“接近的”,求的最小值,并求出此時的(均用表示).(參考數(shù)據(jù):)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的通項公式為,其中,、.
(1)試寫出一組、的值,使得數(shù)列中的各項均為正數(shù).
(2)若,,數(shù)列滿足,且對任意的(),均有,寫出所有滿足條件的的值.
(3)若,數(shù)列滿足,其前項和為,且使(、,)的和有且僅有組,、、…、中有至少個連續(xù)項的值相等,其它項的值均不相等,求、的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),給出以下四個命題:(1)當(dāng)時,單調(diào)遞減且沒有最值;(2)方程一定有實數(shù)解;(3)如果方程(為常數(shù))有解,則解得個數(shù)一定是偶數(shù);(4)是偶函數(shù)且有最小值.其中假命題的序號是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知無窮數(shù)列的前項和為,且滿足,其中、、是常數(shù).
(1)若,,,求數(shù)列的通項公式;
(2)若,,,且,求數(shù)列的前項和;
(3)試探究、、滿足什么條件時,數(shù)列是公比不為的等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的左右焦點分別為F1,F2,離心率為,A為橢圓C上一點,且AF2⊥F1F2,且|AF2|.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點為A1,A2,過A1,A2分別作x軸的垂線 l1,l2,橢圓C的一條切線l:y=kx+m(k≠0)與l1,l2交于M,N兩點,試探究是否為定值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓與長軸是短軸兩倍的橢圓:相切于點
(1)求橢圓與圓的方程;
(2)過點引兩條互相垂直的兩直線與兩曲線分別交于點與點(均不重合).若為橢圓上任一點,記點到兩直線的距離分別為,求的最大值,并求出此時的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,且.
(1)求出,,的值,并求出及數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和;
(3)設(shè),在數(shù)列中取出(且)項,按照原來的順序排列成一列,構(gòu)成等比數(shù)列,若對任意的數(shù)列,均有,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列、滿足:,,,.
(1)求,,,;
(2)求證:數(shù)列是等差數(shù)列,并求的通項公式;
(3)設(shè),若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com