【題目】如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,點(diǎn)O為對(duì)角線BD的中點(diǎn),點(diǎn)E,F(xiàn)分別為棱PC,PD的中點(diǎn),已知PA⊥AB,PA⊥AD.
(1)求證:直線PB∥平面OEF;
(2)求證:平面OEF⊥平面ABCD.
【答案】詳見(jiàn)解析
【解析】
(1)根據(jù)O為PB中點(diǎn),F(xiàn)為PD中點(diǎn),所以,PB∥FO,之后應(yīng)用線面垂直的判定定理證得結(jié)果;
(2)根據(jù)題意,得到PA∥OE,結(jié)合題中所給的條件因?yàn)镻A⊥AB,PA⊥AD,AB∩AD=A,可得PA⊥平面ABCD,從而得到OE⊥平面ABCD,根據(jù)面面垂直的判定定理證得結(jié)果.
(1)O為PB中點(diǎn),F(xiàn)為PD中點(diǎn),所以,PB∥FO
而PB平面OEF,F(xiàn)O平面OEF,
∴ PB∥平面OEF.
(2)連結(jié)AC,因?yàn)锳BCD為平行四邊形,
∴AC與BD交于點(diǎn)O,O為AC中點(diǎn),又E為PC中點(diǎn),
∴ PA∥OE,
因?yàn)镻A⊥AB,PA⊥AD,AB∩AD=A,
∴ PA⊥平面ABCD,
∴ OE⊥平面ABCD
又OE平面OEF,
∴ 平面OEF⊥平面ABCD
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】網(wǎng)購(gòu)是現(xiàn)在比較流行的一種購(gòu)物方式,現(xiàn)隨機(jī)調(diào)查50名個(gè)人收入不同的消費(fèi)者是否喜歡網(wǎng)購(gòu),調(diào)查結(jié)果表明:在喜歡網(wǎng)購(gòu)的25人中有18人是低收入的人,另外7人是高收入的人,在不喜歡網(wǎng)購(gòu)的25人中有6人是低收入的人,另外19人是高收入的人.
喜歡網(wǎng)購(gòu) | 不喜歡網(wǎng)購(gòu) | 總計(jì) | |
低收入的人 | |||
高收入的人 | |||
總計(jì) |
(Ⅰ)試根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并用獨(dú)立性檢驗(yàn)的思想,指出有多大把握認(rèn)為是否喜歡網(wǎng)購(gòu)與個(gè)人收入高低有關(guān)系;
(Ⅱ)將5名喜歡網(wǎng)購(gòu)的消費(fèi)者編號(hào)為1、2、3、4、5,將5名不喜歡網(wǎng)購(gòu)的消費(fèi)者編號(hào)也記作1、2、3、4、5,從這兩組人中各任選一人進(jìn)行交流,求被選出的2人的編號(hào)之和為2的倍數(shù)的概率.
參考公式:
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地要建造一個(gè)邊長(zhǎng)為2(單位:)的正方形市民休閑公園,將其中的區(qū)域開(kāi)挖成一個(gè)池塘,如圖建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為,曲線是函數(shù)圖像的一部分,過(guò)邊上一點(diǎn)在區(qū)域內(nèi)作一次函數(shù)()的圖像,與線段交于點(diǎn)(點(diǎn)不與點(diǎn)重合),且線段與曲線有且只有一個(gè)公共點(diǎn),四邊形為綠化風(fēng)景區(qū).
(1)求證:;
(2)設(shè)點(diǎn)的橫坐標(biāo)為,
①用表示、兩點(diǎn)的坐標(biāo);
②將四邊形的面積表示成關(guān)于的函數(shù),并求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) F (x) = e x 滿足 F ( x) = g ( x) + h( x) ,且 g ( x), h( x) 分別是定義在 R 上的偶函數(shù)和奇函數(shù).
(1)求函數(shù) h(x)的反函數(shù);
(2)已知(x) = g(x 1),若函數(shù)(x)在 [1,3]上滿足(2 a+1) ,求實(shí)數(shù) a 的取值范圍;
(3)若對(duì)于任意 x ∈(0,2]不等式 g(2x) ah(x) ≥ 0 恒成立,求實(shí)數(shù) a 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知甲、乙、丙三位同學(xué)在某次考試中總成績(jī)列前三名,有,,三位學(xué)生對(duì)其排名猜測(cè)如下::甲第一名,乙第二名;:丙第一名;甲第二名;:乙第一名,甲第三名.成績(jī)公布后得知,,,三人都恰好猜對(duì)了一半,則第一名是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的導(dǎo)數(shù)的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),,求實(shí)數(shù)的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),已知函數(shù),.
(Ⅰ)設(shè),求在上的最大值.
(Ⅱ)設(shè),若的極大值恒小于0,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,三棱柱的側(cè)面是圓柱的軸截面,C是圓柱底面圓周上不與A、B重合的一個(gè)點(diǎn)。
(1)若圓柱的軸截面是正方形,當(dāng)點(diǎn)C是弧AB的中點(diǎn)時(shí),求異面直線與AB的所成角的大小(結(jié)果用反三角函數(shù)值表示);
(2)當(dāng)點(diǎn)C是弧AB的中點(diǎn)時(shí),求四棱錐體積與圓柱體積的比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年3月鄭州市被國(guó)務(wù)院確定為全國(guó)46個(gè)生活垃圾分類(lèi)處理試點(diǎn)城市之一,此后由鄭州市城市管理局起草公開(kāi)征求意見(jiàn),經(jīng)專(zhuān)家論證,多次組織修改完善,數(shù)易其稿,最終形成《鄭州市城市生活垃圾分類(lèi)管理辦法》(以下簡(jiǎn)稱(chēng)《辦法》).《辦法》已于2019年9月26日被鄭州市人民政府第35次常務(wù)會(huì)議審議通過(guò),并于2019年12月1日開(kāi)始施行.《辦法》中將鄭州市生活垃圾分為廚余垃圾、可回收垃圾、有害垃圾和其他垃圾4類(lèi).為了獲悉高中學(xué)生對(duì)垃圾分類(lèi)的了解情況,某中學(xué)設(shè)計(jì)了一份調(diào)查問(wèn)卷,500名學(xué)生參加測(cè)試,從中隨機(jī)抽取了100名學(xué)生問(wèn)卷,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,,…,,并整理得到如下頻率分布直方圖:
(1)從總體的500名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)不低于60的概率;
(2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間內(nèi)的學(xué)生人數(shù),
(3)學(xué)校環(huán)保志愿者協(xié)會(huì)決定組織同學(xué)們利用課余時(shí)間分批參加“垃圾分類(lèi),我在實(shí)踐”活動(dòng),以增強(qiáng)學(xué)生的環(huán)保意識(shí).首次活動(dòng)從樣本中問(wèn)卷成績(jī)低于40分的學(xué)生中隨機(jī)抽取2人參加,已知樣本中分?jǐn)?shù)小于40的5名學(xué)生中,男生3人,女生2人,求抽取的2人中男女同學(xué)各1人的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com