已知函數(shù)(1)求的單調(diào)減區(qū)間;(2)在銳角三角形ABC中,A、B、C的對邊且滿足,求的取值范圍.
(1);(2)
解析試題分析:(1)求函數(shù)的單調(diào)區(qū)間需將已知化為的形式,然后利用復(fù)合函數(shù)的單調(diào)性處理,先逆用正弦的二倍角公式和降冪公式,然后利用輔助角公式即可求;(2)三角形問題中,如果有邊角混合的式子,可考慮邊角轉(zhuǎn)化,或變?yōu)殛P(guān)于角的三角關(guān)系式,或變?yōu)殛P(guān)于邊的代數(shù)式處理,該題先利用正弦定理把邊化角,得三角關(guān)系式,從中解,然后結(jié)合已知條件得的范圍(注意是銳角三角形這個(gè)條件),然后確定的范圍,再結(jié)合的圖象求的范圍,從而可求出的取值范圍.
試題解析:(1)由得=,∴,解得,
故的單調(diào)減區(qū)間為;
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e3/1/nt01b1.png" style="vertical-align:middle;" />,由正弦定理得,化簡為,所以=,∴=,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9a/2/jivm91.png" style="vertical-align:middle;" />,所以,由是銳角三角形,所以, ,,∴,∴的取值范圍.為.
考點(diǎn):1、三角函數(shù)的單調(diào)區(qū)間;2、正弦定理;3、三角函數(shù)的值域.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),求的最大值及相應(yīng)的x值;
(2)利用函數(shù)y=sin的圖象經(jīng)過怎樣的變換得到f(x)的圖象.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)當(dāng)時(shí),求在區(qū)間上的取值范圍;
(2)當(dāng)=2時(shí),=,求的值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com