【題目】在平面直角坐標(biāo)系中,已知橢圓的右頂點(diǎn)為,過(guò)點(diǎn)作直線與圓相切,與橢圓交于另一點(diǎn),與右準(zhǔn)線交于點(diǎn).設(shè)直線的斜率為.

1)用表示橢圓的離心率;

2)若,求橢圓的離心率.

【答案】1;(2.

【解析】

1)由題意可得出直線的方程為,利用該直線與圓相切,得出圓心到直線的距離等于半徑可得出,由此可計(jì)算出關(guān)于的關(guān)系式;

2)設(shè)橢圓的焦距為,將直線的方程與橢圓的右準(zhǔn)線方程聯(lián)立,可求出點(diǎn)的坐標(biāo),將直線的方程與橢圓的方程聯(lián)立,可求出點(diǎn)的坐標(biāo),再由,結(jié)合(1)中的結(jié)論,可得出關(guān)于的齊次等式,從而求出橢圓的離心率.

1)直線的方程為,即

因?yàn)橹本與圓相切,所以,故.

所以橢圓的離心率

2)設(shè)橢圓的焦距為,則右準(zhǔn)線方程為,

,所以,

,

解得,則,

所以,

因?yàn)?/span>,所以,

由(1)知,,所以,

所以,即,所以,故橢圓的離心率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】老王有一塊矩形舊鐵皮,其中,,他想充分利用這塊鐵皮制作一個(gè)容器,他有兩個(gè)設(shè)想:設(shè)想1是沿矩形的對(duì)角線折起,使移到點(diǎn),且在平面上的射影恰好在上,再利用新購(gòu)鐵皮縫制其余兩個(gè)面得到一個(gè)三棱錐;設(shè)想2是利用舊鐵皮做側(cè)面,新購(gòu)鐵皮做底面,縫制一個(gè)高為,側(cè)面展開圖恰為矩形的圓柱體;

1)求設(shè)想1得到的三棱錐中二面角的大;

2)不考慮其他因素,老王的設(shè)想1和設(shè)想2分別得到的幾何體哪個(gè)容積更大?說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)的嫦娥四號(hào)探測(cè)器,簡(jiǎn)稱“四號(hào)星”,是世界首個(gè)在月球背面軟著陸和巡視探測(cè)的航天器.2019925日,中國(guó)科研人員利用嫦娥四號(hào)數(shù)據(jù)精確定位了嫦娥四號(hào)的著陸位置,并再現(xiàn)了嫦娥四號(hào)的落月過(guò)程,該成果由國(guó)際科學(xué)期刊《自然·通訊》在線發(fā)表.如圖所示,

現(xiàn)假設(shè)“四號(hào)星”沿地月轉(zhuǎn)移軌道飛向月球后,在月球附近一點(diǎn)變軌進(jìn)入以月球球心為一個(gè)焦點(diǎn)的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在點(diǎn)第二次變軌進(jìn)入仍以為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行.若用分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸長(zhǎng),給出下列式子:①;②;③;④.其中正確的式子的序號(hào)是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記無(wú)窮數(shù)列的前n項(xiàng),的最大項(xiàng)為,第n項(xiàng)之后的各項(xiàng),的最小項(xiàng)為,

1)若數(shù)列的通項(xiàng)公式為,寫出,,并求數(shù)列通項(xiàng)公式;

2)若數(shù)列的通項(xiàng)公式為,判斷是否為等差數(shù)列,若是,求出公差;若不是,請(qǐng)說(shuō)明理由;

3)若數(shù)列為公差大于零的等差數(shù)列,求證:是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績(jī),頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);

2)由直方圖可認(rèn)為考生考試成績(jī)z服從正態(tài)分布,其中分別取考生的平均成績(jī)和考生成績(jī)的方差,那么抽取的4000名考生成績(jī)超過(guò)84.81分(含84.81分)的人數(shù)估計(jì)有多少人?

3)如果用抽取的考生成績(jī)的情況來(lái)估計(jì)全市考生的成績(jī)情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績(jī)不超過(guò)84.81分的考生人數(shù)為,求.(精確到0.001

附:;

,則;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)討論的單調(diào)性;

2)若不等式對(duì)任意恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)全球化、信息化的發(fā)展,企業(yè)之間的競(jìng)爭(zhēng)從資源的爭(zhēng)奪轉(zhuǎn)向人才的競(jìng)爭(zhēng),吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標(biāo)和緊迫任務(wù),在此背景下,某信息網(wǎng)站在15個(gè)城市中對(duì)剛畢業(yè)的大學(xué)生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如下圖所示.

1)若某大學(xué)畢業(yè)生從這15座城市中隨機(jī)選擇一座城市就業(yè),求該生選中月平均收入薪資高于8500元的城市的概率;

2)現(xiàn)有2名大學(xué)畢業(yè)生在這15座城市中各隨機(jī)選擇一座城市就業(yè),且2人的選擇相互獨(dú)立,記X為選中月平均收入薪資高于8500元的城市的人數(shù),求X的分布列和數(shù)學(xué)期望EX);

3)記圖中月平均收入薪資對(duì)應(yīng)數(shù)據(jù)的方差為,月平均期望薪資對(duì)應(yīng)數(shù)據(jù)的方差為,判斷的大。ㄖ恍鑼懗鼋Y(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一年級(jí)有甲,乙,丙三位學(xué)生,他們前三次月考的物理成績(jī)?nèi)绫恚?/span>

第一次月考物理成績(jī)

第二次月考物理成績(jī)

第三次月考物理成績(jī)

學(xué)生甲

80

85

90

學(xué)生乙

81

83

85

學(xué)生丙

90

86

82

則下列結(jié)論正確的是( 。

A. 甲,乙,丙第三次月考物理成績(jī)的平均數(shù)為86

B. 在這三次月考物理成績(jī)中,甲的成績(jī)平均分最高

C. 在這三次月考物理成績(jī)中,乙的成績(jī)最穩(wěn)定

D. 在這三次月考物理成績(jī)中,丙的成績(jī)方差最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖三棱錐ABCD中,BDCD,EF分別為棱BCCD上的點(diǎn),且BD∥平面AEF,AE⊥平面BCD

1)求證:平面AEF⊥平面ACD;

2)若,的中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案