精英家教網 > 高中數學 > 題目詳情

【題目】函數 的圖象不可能是(
A.
B.
C.
D.

【答案】C
【解析】解:當a=0時,函數化為y= ,函數的圖象為:A;

當a=1時,x=0時,y=0,x≠0時,函數化為y= ,函數的圖象為:B;

當a=﹣1時,函數化為y= ,當x∈(0,1)時,y′= <0,函數是減函數,f(0)=0,可知函數的圖象為:D;

故選:C.

【考點精析】通過靈活運用函數的圖象和利用導數研究函數的單調性,掌握函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值;一般的,函數的單調性與其導數的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數在這個區(qū)間單調遞增;(2)如果,那么函數在這個區(qū)間單調遞減即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】函數f(x)=是定義在R上的奇函數,且f(1)=1.

(1)求a,b的值;

(2)判斷并用定義證明f(x)在(+∞)的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數f(x)=Asin(ωx+φ),(A,ω,φ是常數,A>0,ω>0,|φ|≤ )的部分圖象如圖所示,若方程f(x)=a在x∈[﹣ , ]上有兩個不相等的實數根,則a的取值范圍是(
A.[ ,
B.[﹣ ,
C.[﹣
D.[ ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C1的參數方程為 (為參數).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線C2 . (Ⅰ)求曲線C1的普通方程和C2的直角坐標方程;
(Ⅱ)若C1與C2相交于A、B兩點,設點F(1,0),求 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】平面直角坐標系xOy中,過橢圓M: =1(a>b>0)焦點的直線x+y﹣2 =0交M于P,Q兩點,G為PQ的中點,且OG的斜率為9.
(1)求M的方程;
(2)A、B是M的左、右頂點,C、D是M上的兩點,若AC⊥BD,求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中石化集團獲得了某地深海油田區(qū)塊的開采權,集團在該地區(qū)隨機初步勘探了部分兒口井,取得了地質資料.進入全面勘探時期后,集團按網絡點來布置井位進行全面勘探.由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節(jié)約勘探費用.勘探初期數據資料見如表:

井號I

1

2

3

4

5

6

坐標(x,y)(km)

(2,30)

(4,40)

(5,60)

(6,50)

(8,70)

(1,y)

鉆探深度(km)

2

4

5

6

8

10

出油量(L)

40

70

110

90

160

205


(1)1~6號舊井位置線性分布,借助前5組數據求得回歸直線方程為y=6.5x+a,求a,并估計y的預報值;
(2)現準備勘探新井7(1,25),若通過1、3、5、7號井計算出的 的值( 精確到0.01)相比于(1)中b,a的值之差不超過10%,則使用位置最接近的已有舊井6(1,y),否則在新位置打開,請判斷可否使用舊井? (參考公式和計算結果:
(3)設出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質井,那么在原有井號1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質井的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代的天文學和數學著作《周髀算經》中記載:一年有二十四個節(jié)氣,每個節(jié)氣晷(guǐ)長損益相同(晷是按照日影測定時刻的儀器,晷長即為所測量影子的長度).二十四節(jié)氣及晷長變化如圖所示,相鄰兩個節(jié)氣晷長的變化量相同,周而復始.若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(一丈等于十尺,一尺等于十寸),則夏至之后的那個節(jié)氣(小暑)晷長是(
A.五寸
B.二尺五寸
C.三尺五寸
D.四尺五寸

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知過拋物線E:x2=2py(p>0)焦點F且傾斜角的60°直線l與拋物線E交于點M,N,△OMN的面積為4.
(1)求拋物線E的方程;
(2)設P是直線y=﹣2上的一個動點,過P作拋物線E的切線,切點分別為A、B,直線AB與直線OP、y軸的交點分別為Q、R,點C、D是以R為圓心、RQ為半徑的圓上任意兩點,求∠CPD最大時點P的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義域為R的偶函數f(x),其導函數為f'(x),對任意x∈[0,+∞),均滿足:xf'(x)>﹣2f(x).若g(x)=x2f(x),則不等式g(2x)<g(1﹣x)的解集是(
A.(﹣∞,﹣1)
B.
C.
D.

查看答案和解析>>

同步練習冊答案