【題目】平面直角坐標系xOy中,過橢圓M: =1(a>b>0)焦點的直線x+y﹣2 =0交M于P,Q兩點,G為PQ的中點,且OG的斜率為9.
(1)求M的方程;
(2)A、B是M的左、右頂點,C、D是M上的兩點,若AC⊥BD,求四邊形ABCD面積的最大值.

【答案】
(1)解:設(shè)P(x1,y1),Q(x2,y2),G(x0,y0),則 , ,

由此可得 ,因為x1+x2=2x0,y1+y2=2y0, ,所以 ,

又由題意知,M的一個焦點為 ,故a2﹣b2=8.因此a2=9,b2=1,

所以M的方程為


(2)解:由題意可設(shè)直線AC的斜率為,所以直線AC的方程為y=k(x+1),

聯(lián)立方程組 可得,(9+k2)x2+2k2x+k2﹣9=0,所以有 ,進而可得 ,所以 ,

同理可計算出 ,

所以四邊形ABCD面積

設(shè) ,令 (t≥2),所以 ,此時 ,當(dāng)且僅當(dāng) 時取得等號,

所以四邊形ABCD面積的最大值為


【解析】(1)設(shè)P(x1,y1),Q(x2,y2),G(x0,y0),利用平方差法推出 ,通過M的一個焦點,求出a,b,即可求出M的方程.(2)由題意可設(shè)直線AC的斜率為,所以直線AC的方程為y=k(x+1),聯(lián)立 利用韋達定理以及弦長公式,求解四邊形ABCD面積的表達式,通過換元法以及基本不等式求解最值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,同時滿足兩個條件“①x∈R,f( +X)+f( -X)=0;②當(dāng)﹣ <x< 時,f′(x)>0”的一個函數(shù)是(
A.f(x)=sin(2x+
B.f(x)=cos(2x+
C.f(x)=sin(2x﹣
D.f(x)=cos(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(ax﹣1)lnx+ . (Ⅰ)若a=2,求曲線y=f(x)在點(1,f(1))處的切線l的方程;
(Ⅱ)設(shè)函數(shù)g(x)=f'(x)有兩個極值點x1 , x2 , 其中x1∈(0,e),求g(x1)﹣g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年3月27日,一則“清華大學(xué)要求從2017級學(xué)生開始,游泳達到一定標準才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.游泳作為一項重要的求生技能和運動項目受到很多人的喜愛.其實,已有不少高校將游泳列為必修內(nèi)容.某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛游泳是否有關(guān),對100名高三學(xué)生進行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人,抽到喜歡游泳的學(xué)生的概率為
(Ⅰ)請將上述列聯(lián)表補充完整;
(Ⅱ)判斷是否有99.9%的把握認為喜歡游泳與性別有關(guān)?
附:

p(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:函數(shù)f(x)= 是奇函數(shù),命題q:函數(shù)g(x)=x3﹣x2在區(qū)間(0,+∞)上單調(diào)遞增.則下列命題中為真命題的是(
A.p∨q
B.p∧q
C.¬p∧q
D.¬p∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) 的圖象不可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,設(shè)拋物線E:y2=2px(p>0)的焦點為F,準線為直線l,點A、B在直線l上,點M為拋物線E第一象限上的點,△ABM是邊長為 的等邊三角形,直線MF的傾斜角為60°.
(1)求拋物線E的方程;
(2)如圖,直線m過點F交拋物線E于C、D兩點,Q(2,0),直線CQ、DQ分別交拋物線E于G、H兩點,設(shè)直線CD、GH的斜率分別為k1、k2 , 求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知AD與BC是四面體ABCD中相互垂直的棱,若AD=BC=6,且∠ABD=∠ACD=60°,則四面體ABCD的體積的最大值是(
A.
B.
C.18
D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】記U={1,2,…,100},對數(shù)列{an}(n∈N*)和U的子集T,若T=,定義ST=0;若T={t1 , t2 , …,tk},定義ST= + +…+ .例如:T={1,3,66}時,ST=a1+a3+a66 . 現(xiàn)設(shè){an}(n∈N*)是公比為3的等比數(shù)列,且當(dāng)T={2,4}時,ST=30.
(1)求數(shù)列{an}的通項公式;
(2)對任意正整數(shù)k(1≤k≤100),若T{1,2,…,k},求證:ST<ak+1;
(3)設(shè)CU,DU,SC≥SD , 求證:SC+SCD≥2SD

查看答案和解析>>

同步練習(xí)冊答案