【題目】函數(shù)f(x)=是定義在R上的奇函數(shù),且f(1)=1.
(1)求a,b的值;
(2)判斷并用定義證明f(x)在(+∞)的單調(diào)性.
【答案】(1)a=5,b=0; (2)見解析.
【解析】
(1)根據(jù)函數(shù)為奇函數(shù),可利用f(1)=1和f(-1)=-1,解方程組可得a、b值,然后進(jìn)行驗(yàn)證即可;(2)根據(jù)函數(shù)單調(diào)性定義利用作差法進(jìn)行證明.
(1)根據(jù)題意,f(x)=是定義在R上的奇函數(shù),且f(1)=1,
則f(-1)=-f(1)=-1,
則有,解可得a=5,b=0;經(jīng)檢驗(yàn),滿足題意.
(2)由(1)的結(jié)論,f(x)=,
設(shè)<x1<x2,
f(x1)-f(x2)=-=,
又由<x1<x2,則(1-4x1x2)<0,(x1-x2)<0,
則f(x1)-f(x2)>0,
則函數(shù)f(x)在(,+∞)上單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓E的方程為+=1(ab0),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(a,0),點(diǎn)B的坐標(biāo)為(0,b),點(diǎn)M在線段AB上,滿足=2,直線OM的斜率為。
(1)求E的離心率e。
(2)設(shè)點(diǎn)C的坐標(biāo)為(0,-b),N為線段AC的中點(diǎn),點(diǎn)N關(guān)于直線AB的對(duì)稱點(diǎn)的縱坐標(biāo)為,求E的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 是雙曲線 的右焦點(diǎn),過點(diǎn) 作 的一條漸近線的垂線,垂足為 ,線段 與 相交于點(diǎn) ,記點(diǎn) 到 的兩條漸近線的距離之積為 ,若 ,則該雙曲線的離心率是( )
A.
B.2
C. 3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查了解某省屬師范大學(xué)師范類畢業(yè)生參加工作后,從事的工作與教育是否有關(guān)的情況,該校隨機(jī)調(diào)查了該校80位性別不同的2016年師范類畢業(yè)大學(xué)生,得到具體數(shù)據(jù)如表:
與教育有關(guān) | 與教育無關(guān) | 合計(jì) | |
男 | 30 | 10 | 40 |
女 | 35 | 5 | 40 |
合計(jì) | 65 | 15 | 80 |
(1)能否在犯錯(cuò)誤的概率不超過5%的前提下,認(rèn)為“師范類畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)”? 參考公式: (n=a+b+c+d).
附表:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.023 | 6.635 |
(2)求這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率;
(3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名師范類大學(xué)生中隨機(jī)選取4名,記這4名畢業(yè)生從事與教育有關(guān)的人數(shù)為X,求X的數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,同時(shí)滿足兩個(gè)條件“①x∈R,f( +X)+f( -X)=0;②當(dāng)﹣ <x< 時(shí),f′(x)>0”的一個(gè)函數(shù)是( )
A.f(x)=sin(2x+ )
B.f(x)=cos(2x+ )
C.f(x)=sin(2x﹣ )
D.f(x)=cos(2x﹣ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,射線l:θ= 與圓C:ρ=2交于點(diǎn)A,橢圓Γ的方程為ρ2= ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系xOy (Ⅰ)求點(diǎn)A的直角坐標(biāo)和橢圓Γ的參數(shù)方程;
(Ⅱ)若E為橢圓Γ的下頂點(diǎn),F(xiàn)為橢圓Γ上任意一點(diǎn),求 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位附近只有甲,乙兩個(gè)臨時(shí)停車場(chǎng),它們各有50個(gè)車位,為了方便市民停車,某互聯(lián)網(wǎng)停車公司對(duì)這兩個(gè)停車場(chǎng)在工作日某些固定時(shí)刻的剩余停車位進(jìn)行記錄,如下表:
時(shí)間 | 8點(diǎn) | 10點(diǎn) | 12點(diǎn) | 14點(diǎn) | 16點(diǎn) | 18點(diǎn) |
停車場(chǎng)甲 | 10 | 3 | 12 | 6 | 12 | 17 |
停車場(chǎng)乙 | 13 | 4 | 3 | 2 | 6 | 19 |
如果表中某一時(shí)刻停車場(chǎng)剩余停車位數(shù)低于總車位數(shù)的10%,那么當(dāng)車主驅(qū)車抵達(dá)單位附近時(shí),該公司將會(huì)向車主發(fā)出停車場(chǎng)飽和警報(bào).
(Ⅰ)假設(shè)某車主在以上六個(gè)時(shí)刻抵達(dá)單位附近的可能性相同,求他收到甲停車場(chǎng)飽和警報(bào)的概率;
(Ⅱ)從這六個(gè)時(shí)刻中任選一個(gè)時(shí)刻,求甲停車場(chǎng)比乙停車場(chǎng)剩余車位數(shù)少的概率;
(Ⅲ)當(dāng)停車場(chǎng)乙發(fā)出飽和警報(bào)時(shí),求停車場(chǎng)甲也發(fā)出飽和警報(bào)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com