試題分析:
,由余弦定理得
,
,所以
,又
,所以橢圓
的離心率
.
練習冊系列答案
相關習題
科目:高中數學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,直線
與以原點為圓心、橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓
的方程;
(2)如圖,
、
、
是橢圓
的頂點,
是橢圓
上除頂點外的任意點,直線
交
軸于點
,直線
交
于點
,設
的斜率為
,
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數學
來源:不詳
題型:解答題
已知函數
.
(1)若
在
處取得極值,求
的值;
(2)求
的單調區(qū)間;
(3)若
且
,函數
,若對于
,總存在
使得
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學
來源:不詳
題型:解答題
橢圓的左、右焦點分別為
和
,且橢圓過點
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
作不與
軸垂直的直線
交該橢圓于
兩點,
為橢圓的左頂點,試判斷
的大小是否為定值,并說明理由.
查看答案和解析>>
科目:高中數學
來源:不詳
題型:解答題
已知
、
分別是橢圓
:
的左、右焦點,點
在直線
上,線段
的垂直平分線經過點
.直線
與橢圓
交于不同的兩點
、
,且橢圓
上存在點
,使
,其中
是坐標原點,
是實數.
(Ⅰ)求
的取值范圍;
(Ⅱ)當
取何值時,
的面積最大?最大面積等于多少?
查看答案和解析>>
科目:高中數學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,
,
為橢圓
的兩個焦點,點
在橢圓
上,且
的周長為
。
(Ⅰ)求橢圓
的方程
(Ⅱ)設直線
與橢圓
相交于
、
兩點,若
(
為坐標原點),求證:直線
與圓
相切.
查看答案和解析>>
科目:高中數學
來源:不詳
題型:解答題
已知橢圓
:
的離心率為
,直線
:
與以原點為圓心、以橢圓
的短半軸長為半徑的圓相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設橢圓
的左焦點為
,右焦點
,直線
過點
且垂直于橢圓的長軸,動直線
垂直
于點
,
線段
垂直平分線交
于點
,求點
的軌跡
的方程;
(Ⅲ)設
與
軸交于點
,不同的兩點
在
上,且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數學
來源:不詳
題型:單選題
橢圓
的左、右焦點分別為F
1、F
2,P是橢圓上的一點,
,且
,垂足為
,若四邊形
為平行四邊形,則橢圓的離心率的取值范圍是( )
查看答案和解析>>
科目:高中數學
來源:不詳
題型:解答題
已知橢圓
的中心在原點,焦點在
軸上,離心率為
,它的一個頂點恰好是拋物線
的焦點.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
的直線
與橢圓
相切
,直線
與
軸交于點
,當
為何值時
的面積有最小值?并求出最小值.
查看答案和解析>>