【題目】已知函數(shù)f(x)=x2+ax,若f(f(x))的最小值與f(x)的最小值相等,則a的取值范圍是

【答案】{aa≥2或a≤0}
【解析】解:由于f(x)=x2+ax,x∈R.則當(dāng)x=﹣ 時(shí),f(x)min=﹣ , 又函數(shù)y=f(f(x))的最小值與函數(shù)y=f(x)的最小值相等,
則函數(shù)y必須要能夠取到最小值,即﹣ ≤﹣ ,
得到a≤0或a≥2,
所以答案是:{a|a≥2或a≤0}.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用函數(shù)的最值及其幾何意義和二次函數(shù)的性質(zhì),掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲;當(dāng)時(shí),拋物線(xiàn)開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線(xiàn)開(kāi)口向下,函數(shù)在上遞增,在上遞減即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)有4個(gè)零點(diǎn),其圖象如下圖,和圖象吻合的函數(shù)解析式是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中, , 的中點(diǎn),將三角形沿翻折到圖②的位置,使得平面 平面.

(1)在線(xiàn)段上確定點(diǎn),使得平面,并證明;

(2)求所在平面構(gòu)成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(﹣ ,0),B( ,0),銳角α的終邊與單位圓O交于點(diǎn)P. (Ⅰ)用α的三角函數(shù)表示點(diǎn)P的坐標(biāo);
(Ⅱ)當(dāng) =﹣ 時(shí),求α的值;
(Ⅲ)在x軸上是否存在定點(diǎn)M,使得| |= | |恒成立?若存在,求出點(diǎn)M的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某班學(xué)生一次英語(yǔ)測(cè)驗(yàn)的成績(jī)分析,各分?jǐn)?shù)段的分布如圖(分?jǐn)?shù)取整數(shù)),由此,估計(jì)這次測(cè)驗(yàn)的優(yōu)秀率(不小于80分)為(

A.92%
B.24%
C.56%
D.5.6%

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,點(diǎn)E、F、G分別是棱SA、SB、SC的中點(diǎn).求證:
(1)平面EFG∥平面ABC;
(2)BC⊥平面SAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若Ω是長(zhǎng)方體ABCD﹣A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線(xiàn)段A1B1上異于B1的點(diǎn),F(xiàn)為線(xiàn)段BB1上異于B1的點(diǎn),且EH∥A1D1 , 則下列結(jié)論中不正確的是(
A.EH∥FG
B.四邊形EFGH是矩形
C.Ω是棱柱
D.Ω是棱臺(tái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正三角形內(nèi)切圓的半徑是高的 ,把這個(gè)結(jié)論推廣到正四面體,類(lèi)似的結(jié)論正確的是(
A.正四面體的內(nèi)切球的半徑是高的
B.正四面體的內(nèi)切球的半徑是高的
C.正四面體的內(nèi)切球的半徑是高的
D.正四面體的內(nèi)切球的半徑是高的

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用計(jì)算機(jī)隨機(jī)產(chǎn)生的有序二元數(shù)組(x,y)滿(mǎn)足﹣1≤x≤1,﹣1≤y≤1.
(1)若x,y∈Z,求事件“x2+y2≤1”的概率.
(2)求事件“x2+y2>1”的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案