【題目】已知正三角形內(nèi)切圓的半徑是高的 ,把這個(gè)結(jié)論推廣到正四面體,類(lèi)似的結(jié)論正確的是(
A.正四面體的內(nèi)切球的半徑是高的
B.正四面體的內(nèi)切球的半徑是高的
C.正四面體的內(nèi)切球的半徑是高的
D.正四面體的內(nèi)切球的半徑是高的

【答案】C
【解析】解:如圖示:

球心到正四面體一個(gè)面的距離即球的半徑r,連接球心與正四面體的四個(gè)頂點(diǎn).
把正四面體分成四個(gè)高為r的三棱錐,所以4× S×r= ×S×h,r= h,
(其中S為正四面體一個(gè)面的面積,h為正四面體的高)
故選:C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用類(lèi)比推理的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握根據(jù)兩類(lèi)不同事物之間具有某些類(lèi)似(或一致)性,推測(cè)其中一類(lèi)事物具有與另外一類(lèi)事物類(lèi)似的性質(zhì)的推理,叫做類(lèi)比推理.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,三角形ABC為等腰直角三角形,AC=BC= ,AA1=1,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC1∥平面CDB1;
(2)二面角B1﹣CD﹣B的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2+ax,若f(f(x))的最小值與f(x)的最小值相等,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB為圓O的直徑,CD為垂直于AB的一條弦,垂足為E,弦AGCDF.

(1)求證:E,F,GB四點(diǎn)共圓;

(2)若GF=2FA=4,求線(xiàn)段AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,平面PBC⊥底面ABCD,且 PB=PC=
(Ⅰ)求證:AB⊥CP;
(Ⅱ)求點(diǎn)B到平面PAD的距離;
(Ⅲ)設(shè)面PAD與面PBC的交線(xiàn)為l,求二面角A﹣l﹣B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】證明與分析
(1)已知a,b為正實(shí)數(shù).求證: + ≥a+b;
(2)某題字跡有污損,內(nèi)容是“已知|x|≤1, ,用分析法證明|x+y|≤|1+xy|”.試分析污損部分的文字內(nèi)容是什么?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設(shè)甲、乙、丙面試合格的概率分別是 , , ,且面試是否合格互不影響.求:
(1)至少有1人面試合格的概率;
(2)簽約人數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一點(diǎn)在直線(xiàn)上從時(shí)刻t=0(s)開(kāi)始以速度v(t)=t2﹣4t+3(m/s)運(yùn)動(dòng),求:
(1)在t=4s時(shí)的位置;
(2)在t=4s的運(yùn)動(dòng)路程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知∠BAC=90°,AB=AC=1,AA1=3,點(diǎn)E,F(xiàn)分別在棱BB1 , CC1上,且C1F= C1C,BE=λBB1 , 0<λ<1.

(1)當(dāng)λ= 時(shí),求異面直線(xiàn)AE與A1F所成角的大小;
(2)當(dāng)直線(xiàn)AA1與平面AEF所成角的正弦值為 時(shí),求λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案