【題目】用計算機隨機產生的有序二元數組(x,y)滿足﹣1≤x≤1,﹣1≤y≤1.
(1)若x,y∈Z,求事件“x2+y2≤1”的概率.
(2)求事件“x2+y2>1”的概率.
【答案】
(1)解:x∈{﹣1,0,1}; y∈{﹣1,0,1}
∴基本事件總數n=3×3=9
∵x2+y2≤1,
∴所有事件(﹣1,0)(0,0)(0,1),m=3
∴所求概率為 =
(2)解:試驗發(fā)生包含的事件對應的集合是Ω={(x,y)|﹣1<x<1,﹣1<y<1},
它的面積是2×2=4,
滿足條件的事件對應的集合是A={(x,y)|﹣1<x<1,﹣1<y<1,x2+y2>1}
集合A對應的圖形的面積是邊長為2的正方形內部,且圓的外部,面積是4﹣π
∴根據幾何概型的概率公式得到P=
【解析】(1)先確定基本事件總數n=3×3=9,滿足x2+y2≤1,所有事件(﹣1,0)(0,0)(0,1),m=3,即可求得事件“x2+y2≤1”的概率;(2)本題是一個幾何概型,試驗發(fā)生包含的事件對應的集合是Ω={(x,y)|﹣1<x<1,﹣1<y<1},滿足條件的事件對應的集合是A={(x,y)|﹣1<x<1,﹣1<y<1,x2+y2>1},做出兩個集合對應的圖形的面積,根據幾何概型概率公式得到結果.
【考點精析】解答此題的關鍵在于理解幾何概型的相關知識,掌握幾何概型的特點:1)試驗中所有可能出現的結果(基本事件)有無限多個;2)每個基本事件出現的可能性相等.
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設甲、乙、丙面試合格的概率分別是 , , ,且面試是否合格互不影響.求:
(1)至少有1人面試合格的概率;
(2)簽約人數ξ的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一點在直線上從時刻t=0(s)開始以速度v(t)=t2﹣4t+3(m/s)運動,求:
(1)在t=4s時的位置;
(2)在t=4s的運動路程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據以往經驗,潛水員下潛的平均速度為(米/單位時間),每單位時間的用氧量為(升),在水底作業(yè)10個單位時間,每單位時間用氧量為0.9(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為1.5(升),記該潛水員在此次考察活動中的總用氧量為(升).
(1)求關于的函數關系式;
(2)若 ,求當下潛速度取什么值時,總用氧量最少.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知∠BAC=90°,AB=AC=1,AA1=3,點E,F分別在棱BB1 , CC1上,且C1F= C1C,BE=λBB1 , 0<λ<1.
(1)當λ= 時,求異面直線AE與A1F所成角的大;
(2)當直線AA1與平面AEF所成角的正弦值為 時,求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個結論: ①函數 的值域是(0,+∞);
②直線2x+ay﹣1=0與直線(a﹣1)x﹣ay﹣1=0平行,則a=﹣1;
③過點A(1,2)且在坐標軸上的截距相等的直線的方程為x+y=3;
④若圓柱的底面直徑與高都等于球的直徑,則圓柱的側面積等于球的表面積.
其中正確的結論序號為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com