哈爾濱市第一次聯(lián)考后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為

 
優(yōu)秀
非優(yōu)秀
合計(jì)
甲班
10
 
 
乙班
 
30
 
    合計(jì)
 
 
110
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”;
(3)若按下面的方法從甲班優(yōu)秀的學(xué)生中抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào)。試求抽到9號(hào)或10號(hào)的概率。
參考公式與臨界值表:。

0.100
0.050
0.025
0.010
0.001

2.706
3.841
5.024
6.635
10.828

(1) 

 
優(yōu)秀
非優(yōu)秀
合計(jì)
甲班
10
50
60
乙班
20
30
50
合計(jì)
30
80
110
(2)按99.9%的可靠性要求,不能認(rèn)為“成績(jī)與班級(jí)有關(guān)系” 
(3)

解析試題分析:(1)            4分

 
優(yōu)秀
非優(yōu)秀
合計(jì)
甲班
10
50
60
乙班
20
30
50
合計(jì)
30
80
110
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),得到K2= ≈7.487<10.828.因此按99.9%的可靠性要求,不能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”    8分
(3)設(shè)“抽到9或10號(hào)”為事件A,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)為(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36個(gè).事件A包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7個(gè).所以P(A)= ,即抽到9號(hào)或10號(hào)的概率為.      12分
考點(diǎn):本題考查了獨(dú)立性檢驗(yàn)及概率的求法
點(diǎn)評(píng):根據(jù)假設(shè)檢驗(yàn)的思想,比較計(jì)算出的與臨界值的大小,選擇接受假設(shè)還是拒絕假設(shè)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

口袋中有5個(gè)大小相同的小球,其中1個(gè)小球標(biāo)有數(shù)字“3”,2個(gè)小球標(biāo)有數(shù)字“2”,2個(gè)小球標(biāo)有數(shù)字“1”,每次從中任取一個(gè)小球,取后不放回,連續(xù)抽取兩次。
(I)求兩次取出的小球所標(biāo)數(shù)字不同的概率;
(II)記兩次取出的小球所標(biāo)數(shù)字之和為X,求事件的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

哈爾濱市五一期間決定在省婦女兒中心舉行中學(xué)生“藍(lán)天綠樹、愛護(hù)環(huán)境”圍棋比賽,規(guī)定如下:
兩名選手比賽時(shí)每局勝者得1分,負(fù)者得0分,比賽進(jìn)行到有一人比對(duì)方多3分或打滿7局時(shí)停止.
設(shè)某學(xué)校選手甲和選手乙比賽時(shí),甲在每局中獲勝的概率為,且各局勝負(fù)相互獨(dú)立.已知
第三局比賽結(jié)束時(shí)比賽停止的概率為
(1)求的值;
(2)求甲贏得比賽的概率;
(3)設(shè)表示比賽停止時(shí)已比賽的局?jǐn)?shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

袋中裝著分別標(biāo)有數(shù)字1,2,3,4,5的5個(gè)形狀相同的小球.
(1)從袋中任取2個(gè)小球,求兩個(gè)小球所標(biāo)數(shù)字之和為3的倍數(shù)的概率;
(2)從袋中有放回的取出2個(gè)小球,記第一次取出的小球所標(biāo)數(shù)字為x,第二次為y,求點(diǎn)滿足的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知關(guān)于x的一元二次方程x2-2(a-2)xb2+16=0.
(1)若a,b是一枚骰子擲兩次所得到的點(diǎn)數(shù),求方程有兩正根的概率;
(2)若a∈[2,6],b∈[0,4],求方程沒有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

從裝有大小相同的2個(gè)紅球和6個(gè)白球的袋子中,每摸出2個(gè)球?yàn)橐淮卧囼?yàn),直到摸出的球中有紅球(不放回),則試驗(yàn)結(jié)束.
(Ⅰ)求第一次試驗(yàn)恰摸到一個(gè)紅球和一個(gè)白球概率;
(Ⅱ)記試驗(yàn)次數(shù)為,求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2012年10月1日,為慶祝中華人們共和國(guó)成立63周年,來(lái)自北京大學(xué)和清華大學(xué)的共計(jì)6名大學(xué)生志愿服務(wù)者被隨機(jī)平均分配到天安門廣場(chǎng)運(yùn)送礦泉水、清掃衛(wèi)生、維持秩序這三個(gè)崗位服務(wù),且運(yùn)送礦泉水崗位至少有一名北京大學(xué)志愿者的概率是。
(1)求6名志愿者中來(lái)自北京大學(xué)、清華大學(xué)的各幾人;
(2)求清掃衛(wèi)生崗位恰好北京大學(xué)、清華大學(xué)人各一人的概率;
(3)設(shè)隨機(jī)變量ζ為在維持秩序崗位服務(wù)的北京大學(xué)志愿者的人數(shù),求ζ分布列及期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

現(xiàn)有甲、乙兩個(gè)靶。某射手向甲靶射擊一次,命中的概率為,命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中的概率為,每命中一次得2分,沒有命中得0分。該射手每次射擊的結(jié)果相互獨(dú)立。假設(shè)該射手完成以上三次射擊。
(Ⅰ)求該射手恰好命中一次的概率;
(Ⅱ)求該射手的總得分X的分布列及數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球, 乙盒內(nèi)有大小相同的2個(gè)紅球和4個(gè)黑球,現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球.
(Ⅰ)求取出的4個(gè)球均為黑球的概率;
(Ⅱ)求取出的4個(gè)球中恰有1個(gè)紅球的概率;
(Ⅲ)設(shè)為取出的4個(gè)球中紅球的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案