【題目】關于x的方程x[02]時有唯一解,求m取值范圍.

【答案】4,]{1+2}

【解析】

,則t[1,4],問題轉化為方程[1,4]上有唯一解.根據(jù)一元二次方程根的判別式等于零和大于零進行分類討論,最后求出m取值范圍

,則t[1,4],

∴方程[1,4]上有唯一解.

1)若,即時,

,則t,符合題意,

,則t,不符合題意.

2)若,即時,

t1是方程的解,由根與系數(shù)的關系可知t2也是方程的解,與方程在[1,4]上有唯一解矛盾;

t4是方程的解,由根與系數(shù)的關系可知t也是方程的解,符合題意;

此時m–14,∴m

若方程的解在(1,4)上,根據(jù)零點的存在性定理可知

,解得4<m

綜上,m的取值范圍是(4,]{1+2}

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A、B、C的對邊分別為a,b,c.角A,B,C成等差數(shù)列.
(1)求cosB的值;
(2)邊a,b,c成等比數(shù)列,求sinAsinC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)h(x)滿足
①h(0)=1,h(1)=0;
②對任意a∈[0,1],有h(h(a))=a;
③在(0,1)上單調遞減.則稱h(x)為補函數(shù).已知函數(shù)h(x)= (λ>﹣1,p>0)
(1)判函數(shù)h(x)是否為補函數(shù),并證明你的結論;
(2)若存在m∈[0,1],使得h(m)=m,若m是函數(shù)h(x)的中介元,記p= (n∈N+)時h(x)的中介元為xn , 且Sn= ,若對任意的n∈N+ , 都有Sn ,求λ的取值范圍;
(3)當λ=0,x∈(0,1)時,函數(shù)y=h(x)的圖象總在直線y=1﹣x的上方,求P的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,建立平面直角坐標系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程y=kx﹣ (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關.炮的射程是指炮彈落地點的橫坐標.

(1)求炮的最大射程;
(2)設在第一象限有一飛行物(忽略其大。滹w行高度為3.2千米,試問它的橫坐標a不超過多少時,炮彈可以擊中它?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)某食品廠為了檢查一條自動包裝流水線的生產(chǎn)情況,隨機抽取該流水線上件產(chǎn)品作為樣本稱出它們的重量(單位:克),重量的分組區(qū)間為,, ,,由此得到樣本的頻率分布直方圖,如圖所示.

1)根據(jù)頻率分布直方圖,求重量超過克的產(chǎn)品數(shù)量;

2)在上述抽取的件產(chǎn)品中任取件,設為重量超過克的產(chǎn)品數(shù)量,求的分布列;

3)從該流水線上任取件產(chǎn)品,求恰有件產(chǎn)品的重量超過克的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結論中不正確的是( )
A.y與x具有正的線性相關關系
B.回歸直線過樣本點的中心( ,
C.若該大學某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代著名的數(shù)學著作有10部算書,被稱為“算經(jīng)十書”.某校數(shù)學興趣小組甲、乙、丙、丁四名同學對古代著名的數(shù)學著作產(chǎn)生濃厚的興趣.一天,他們根據(jù)最近對這十部書的閱讀本數(shù)情況說了這些話,甲:“乙比丁少”;乙:“甲比丙多”;丙:“我比丁多”; 丁:“丙比乙多”,他們說的這些話中,只有一個人說的是真實的,而這個人正是他們四個人中讀書本數(shù)最少的一個(他們四個人對這十部書閱讀本數(shù)各不相同).甲、乙、丙、丁按各人讀書本數(shù)由少到多的排列是( )

A. 乙甲丙丁 B. 甲丁乙丙 C. 丙甲丁乙 D. 甲丙乙丁

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某共享單車企業(yè)在城市就“一天中一輛單車的平均成本與租用單車數(shù)量之間的關系”進行了調查,并將相關數(shù)據(jù)統(tǒng)計如下表:

根據(jù)以上數(shù)據(jù),研究人員設計了兩種不同的回歸分析模型,得到兩個擬合函數(shù):

模型甲:,模型乙:.

(1)為了評價兩種模型的擬合效果,完成以下任務:

①完成下表(計算結果精確到0.1元)(備注:,稱為相應于點的殘差);

②分別計算模型甲與模型乙的殘差平方和,并通過比較的大小,判斷哪個模型擬合效果更好.

(2)這家企業(yè)在4城市投放共享單車后,受到廣大市民的熱烈歡迎并供不應求,于是該企業(yè)決定增加單車投放量.根據(jù)市場調查,市場投放量達到1萬輛時,平均每輛單車一天能收入7.2元;市場投放量達到1.2萬輛時,平均每輛單車一天能收入6.8元.若按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,問該企業(yè)投放量選擇1萬輛還是1.2萬輛能獲得更多利潤?請說明理由.(利潤收入成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

1)求頻率分布直方圖中的值;

2)估計該企業(yè)的職工對該部門評分不低于80的概率;

3)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率.

查看答案和解析>>

同步練習冊答案