已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)的和Sn=
⑴ 求{an}的通項(xiàng)公式;
⑵ 設(shè)等比數(shù)列{bn}的首項(xiàng)為b,公比為2,前n項(xiàng)的和為Tn.若對(duì)任意n∈N*,Sn≤Tn
均成立,求實(shí)數(shù)b的取值范圍.
(1) an=2n-1(n∈N*).(2) b≥.
解析試題分析: (1) a1=,解得a1=1.
當(dāng)n≥2時(shí),由an=Sn-Sn-1=, -2
得(an-an-1-2)(an+an-1)=0.
又因?yàn)閍n>0,所以an-an-1=2.
因此{(lán)an}是首項(xiàng)為1,公差為2的等差數(shù)列,
即an=2n-1(n∈N*). 6
(2) 因?yàn)镾n=n2,Tn=b(2n-1),
所以Sn≤Tn對(duì)任意n∈N*恒成立,
當(dāng)且僅當(dāng)≤對(duì)任意n∈N*均成立.
令Cn=,因?yàn)镃n+1-Cn=-=,
所以C1>C2,且當(dāng)n≥2時(shí),Cn<Cn+1.
因此≤C2=,即b≥.
考點(diǎn):本題主要考查等差數(shù)列的通項(xiàng)公式, “放縮法”證明不等式。
點(diǎn)評(píng):中檔題,涉及數(shù)列的不等式證明問題,往往需要先求和、再證明。本題(2)通過研究數(shù)列的“單調(diào)性”,利用“放縮法”,達(dá)到證明目的。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)若,記為數(shù)列的前項(xiàng)和,且,),點(diǎn)在函數(shù)的圖像上,求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列的前項(xiàng)和為,若,且 求數(shù)列的通項(xiàng)公式以及前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的首項(xiàng)為,其前項(xiàng)和為,且對(duì)任意正整數(shù)有:、、成等差數(shù)列.
(1)求證:數(shù)列成等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知單調(diào)遞增的等比數(shù)列滿足,是,的等差中項(xiàng)。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列中,已知,且公比為正整數(shù).
(1) 求數(shù)列的通項(xiàng)公式;(5分)
(2) 求數(shù)列的前項(xiàng)和.(5分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題14分)
已知等比數(shù)列滿足,且是,的等差中項(xiàng).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,,求使 成立的正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)
已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程的兩根,且
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和;
(3)設(shè)函數(shù)若對(duì)任意的都成立,求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com