已知數(shù)列的首項(xiàng)為,其前項(xiàng)和為,且對(duì)任意正整數(shù)有:、、成等差數(shù)列.
(1)求證:數(shù)列成等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式.

(1),當(dāng)時(shí),,所以,
,又,所以成以4為首項(xiàng)、2為公比的等比數(shù)列(2)

解析試題分析:⑴因?qū)θ我?img src="http://thumb.zyjl.cn/pic5/tikupic/54/e/eee4c.png" style="vertical-align:middle;" />有成等差數(shù)列,所以         2分
又當(dāng)時(shí),,所以,       4分
,又,
所以成以4為首項(xiàng)、2為公比的等比數(shù)列        6分
⑵由⑴得,所以
當(dāng)時(shí),
滿(mǎn)足此式,所以       12分
考點(diǎn):等比數(shù)列證明及數(shù)列求通項(xiàng)
點(diǎn)評(píng):證明數(shù)列是等比數(shù)列一般采用定義,即相鄰兩項(xiàng)的比值是常數(shù),本題求通項(xiàng)用到了公式

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,已知,.
(1)求、并判斷能否為等差或等比數(shù)列;
(2)令,求證:為等比數(shù)列;
(3)求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前n項(xiàng)和為,,且,數(shù)列滿(mǎn)足,數(shù)列的前n項(xiàng)和為(其中).
(Ⅰ)求;
(Ⅱ)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列{}中,,,設(shè),
(1)證明:數(shù)列{}是等差數(shù)列;
(2)求數(shù)列{}的前n項(xiàng)和;
(3)設(shè),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列中,,求其第4項(xiàng)及前5項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列中,,.設(shè).
(1)求數(shù)列的通項(xiàng)公式;   
(2)若,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)的和Sn
⑴ 求{an}的通項(xiàng)公式;
⑵ 設(shè)等比數(shù)列{bn}的首項(xiàng)為b,公比為2,前n項(xiàng)的和為T(mén)n.若對(duì)任意n∈N*,Sn≤Tn
均成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知三個(gè)實(shí)數(shù)a、b、c成等差數(shù)列,且它們的和為12,又a+2、b+2、c+5成等比數(shù)列,求a、b、c的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

.已知數(shù)列{an}滿(mǎn)足a1=1,a2=r(r>0),數(shù)列{bn}是公比為q的等比數(shù)列(q>0),bn=anan+1,cn=a2n-1+a2n,求cn。

查看答案和解析>>

同步練習(xí)冊(cè)答案