【題目】在平面直角坐標(biāo)系中,已知橢圓的左頂點為,右焦點為,,為橢圓上兩點,圓.

(1)若軸,且滿足直線與圓相切,求圓的方程;

(2)若圓的半徑為2,點滿足,求直線被圓截得弦長的最大值.

【答案】(1)

(2)

【解析】

1)根據(jù)題意先計算出點坐標(biāo),然后得到直線的方程,根據(jù)直線與圓相切,得到半徑的大小,從而得到所求圓的方程;(2)先計算斜率不存在時,被圓截得弦長,斜率存在時設(shè)為,與橢圓聯(lián)立,得到,代入到得到的關(guān)系,表示出直線被圓截得的弦長,代入的關(guān)系,從而得到弦長的最大值.

解:(1)因為橢圓的方程為

所以,,

因為軸,所以,

根據(jù)對稱性,可取,

則直線的方程為,即.

因為直線與圓相切,得,

所以圓的方程為 .

(2)圓的半徑為2,可得圓的方程為.

①當(dāng)軸時,,所以,

此時得直線被圓截得的弦長為.

②當(dāng)軸不垂直時,設(shè)直線的方程為,

,,

首先由,得,

,所以(*).

聯(lián)立,消去,

時,,

代入(*)式,得,

由于圓心到直線的距離為,

所以直線被圓截得的弦長為,

故當(dāng)時,有最大值為.

綜上,因為,

所以直線被圓截得的弦長的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的右焦點為F到直線的距離為,拋物線的焦點與橢圓E的焦點F重合,過F作與x軸垂直的直線交橢圓于S,T兩點,交拋物線于C,D兩點,且

1)求橢圓E及拋物線G的方程;

2)過點F且斜率為k的直線l交橢圓于A,B點,交拋物線于M,N兩點,如圖所示,請問是否存在實常數(shù),使為常數(shù),若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)號為12,3的三位小學(xué)生,在課余時間一起玩“擲骰子爬樓梯”游戲,規(guī)則如下:投擲一顆骰子,將每次出現(xiàn)點數(shù)除以3,若學(xué)號與之同余(同除以3余數(shù)相同),則該小學(xué)生可以上2階樓梯,另外兩位只能上1階樓梯,假定他們都是從平地(0階樓梯)開始向上爬,且樓梯數(shù)足夠多.

1)經(jīng)過2次投擲骰子后,學(xué)號為1的同學(xué)站在第X階樓梯上,試求X的分布列;

2)經(jīng)過多次投擲后,學(xué)號為3的小學(xué)生能站在第n階樓梯的概率記為,試求,,的值,并探究數(shù)列可能滿足的一個遞推關(guān)系和通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項和為,把滿足條件的所有數(shù)列構(gòu)成的集合記為

1)若數(shù)列的通項為,則是否屬于?

2)若數(shù)列是等差數(shù)列,且,求的取值范圍;

3)若數(shù)列的各項均為正數(shù),且,數(shù)列中是否存在無窮多項依次成等差數(shù)列,若存在,給出一個數(shù)列的通項;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點是曲線上的動點,點的延長線上,且,點的軌跡為

(1)求直線及曲線的極坐標(biāo)方程;

(2)若射線與直線交于點,與曲線交于點(與原點不重合),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動點在橢圓上,過點軸的垂線,垂足為,點滿足,已知點的軌跡是過點的圓.

1)求橢圓的方程;

2)設(shè)直線與橢圓交于兩點(,軸的同側(cè)),,為橢圓的左、右焦點,若,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且的最小值為

1)求實數(shù)的值及函數(shù)的單調(diào)遞減區(qū)間;

2)當(dāng)時,若函數(shù)有且僅有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,上一點,且.

1)求證:平面

2的中點,若二面角的平面角的正切值為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,由直三棱柱和四棱錐構(gòu)成的幾何體中, ,平面平面

Ⅰ)求證: ;

Ⅱ)在線段上是否存在點,使直線與平面所成的角為?若存在,求的值,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案