【題目】已知函數(shù).為自然對(duì)數(shù)的底數(shù))

1)當(dāng)時(shí),設(shè),求函數(shù)上的最值;

2)當(dāng)時(shí),證明:,其中表示中較小的數(shù).

【答案】1)最小值為,最大值為;(2)證明見解析.

【解析】

1)由題意知,令其導(dǎo)數(shù)為0,解得,從而可探究的單調(diào)性,可直接確定其最小值,通過(guò)作差法可比較,的大小,從而可求最大值.

2)分成,兩種情況,通過(guò)對(duì)所證不等式進(jìn)行變形.第一種情況下等價(jià)于證明,設(shè),通過(guò)導(dǎo)數(shù)法可證明上單調(diào)遞增,由 ,所以;第二種情況下等價(jià)于證明,由(1)知,,及,,所以,設(shè),通過(guò)導(dǎo)數(shù)可證明上單調(diào)遞增,由,所以,從而可證明.

解:(1)當(dāng)時(shí),,,則,

,得,當(dāng)時(shí),;當(dāng)時(shí),.

所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

從而上的最小值為.因?yàn)?/span>,,

,

所以,從而上的最大值為.

2)①當(dāng),即時(shí),.

設(shè),則.

,則,

因?yàn)?/span>,所以,因?yàn)?/span>,所以

當(dāng)且僅當(dāng)時(shí),等號(hào)成立.從而上單調(diào)遞增.

注意到,所以,從而上單調(diào)遞增.

注意到,所以,原不等式成立.

②當(dāng),即時(shí),.

,

由(1)知,,及,,所以.

設(shè),,則,

所以上單調(diào)遞增.注意到,所以,原不等式成立.

綜上,當(dāng)時(shí),,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面ABCD,,,,.

1)證明:;

2)求二面角的余弦值;

3)設(shè)Q為線段PD上的點(diǎn),且直線AQ和平面PAC所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求的極大值點(diǎn);

2)當(dāng),時(shí),若過(guò)點(diǎn)存在3條直線與曲線相切,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】元朝著名的數(shù)學(xué)家朱世杰在《四元玉鑒》中有一首詩(shī):我有一壺酒,攜著游春走.遇店添一倍,逢友飲一斗.”基于此情景,設(shè)計(jì)了如圖所示的程序框圖,若輸入的,輸出的,則判斷框中可以填(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班級(jí)有60名學(xué)生,學(xué)號(hào)分別為160,其中男生35人,女生25人.為了了解學(xué)生的體質(zhì)情況,甲、乙兩人對(duì)全班最近一次體育測(cè)試的成績(jī)分別進(jìn)行了隨機(jī)抽樣.其中一人用的是系統(tǒng)抽樣,另一人用的是分層抽樣,他們得到各12人的樣本數(shù)據(jù)如下所示,并規(guī)定體育成績(jī)大于或等于80人為優(yōu)秀.

甲抽取的樣本數(shù)據(jù):

學(xué)號(hào)

4

9

14

19

24

29

34

39

44

49

54

59

性別

體育成績(jī)

90

80

75

80

83

85

75

80

70

80

83

70

女抽取的樣本數(shù)據(jù):

學(xué)號(hào)

1

8

10

20

23

28

33

35

43

48

52

57

性別

體育成績(jī)

95

85

85

80

70

80

80

65

70

60

70

80

(Ⅰ)在乙抽取的樣本中任取4人,記這4人中體育成績(jī)優(yōu)秀的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望;

(Ⅱ)請(qǐng)你根據(jù)乙抽取的樣本數(shù)據(jù),判斷是否有95%的把握認(rèn)為體育成績(jī)是否為優(yōu)秀和性別有關(guān);

(Ⅲ)判斷甲、乙各用的何種抽樣方法,并根據(jù)(Ⅱ)的結(jié)論判斷哪種抽樣方法更優(yōu),說(shuō)明理由.

附:

0.15

0.10

0.05

0.010

0.005

0.001

k

2.072

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,已知點(diǎn),直線,動(dòng)點(diǎn)到點(diǎn)的距離比它到直線的距離小2.

1)求點(diǎn)的軌跡的方程;

2)設(shè)斜率為2的直線與曲線交于兩點(diǎn)(點(diǎn)在第一象限),過(guò)點(diǎn)軸的平行線,問(wèn)在坐標(biāo)平面中是否存在定點(diǎn),使直線交直線于點(diǎn),且恒成立?若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】年前某市質(zhì)監(jiān)部門根據(jù)質(zhì)量管理考核指標(biāo)對(duì)本地的500家食品生產(chǎn)企業(yè)進(jìn)行考核,然后通過(guò)隨機(jī)抽樣抽取其中的50家,統(tǒng)計(jì)其考核成績(jī)(單位:分),并制成如下頻率分布直方圖.

1)求這50家食品生產(chǎn)企業(yè)考核成績(jī)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)及中位數(shù)a(精確到0.01

2)該市質(zhì)監(jiān)部門打算舉辦食品生產(chǎn)企業(yè)質(zhì)量交流會(huì),并從這50家食品生產(chǎn)企業(yè)中隨機(jī)抽取4家考核成績(jī)不低于88分的企業(yè)發(fā)言,記抽到的企業(yè)中考核成績(jī)?cè)?/span>的企業(yè)數(shù)為X,求X的分布列與數(shù)學(xué)期望

3)若該市食品生產(chǎn)企業(yè)的考核成績(jī)X服從正態(tài)分布其中近似為50家食品生產(chǎn)企業(yè)考核成績(jī)的平均數(shù),近似為樣本方差,經(jīng)計(jì)算得,利用該正態(tài)分布,估計(jì)該市500家食品生產(chǎn)企業(yè)質(zhì)量管理考核成績(jī)高于90.06分的有多少家?(結(jié)果保留整數(shù)).

附參考數(shù)據(jù)與公式:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左頂點(diǎn)為,左、右焦點(diǎn)分別為,離心率為,是橢圓上的一個(gè)動(dòng)點(diǎn)(不與左、右頂點(diǎn)重合),且的周長(zhǎng)為6,點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,直線交于點(diǎn).

1)求橢圓方程;

2)若直線與橢圓交于另一點(diǎn),且,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中某班共有40個(gè)學(xué)生,將學(xué)生的身高分成4組:平頻率/組距,,,進(jìn)行統(tǒng)計(jì),作成如圖所示的頻率分布直方圖.

1)求頻率分布直方圖中的值和身高在內(nèi)的人數(shù);

2)求這40個(gè)學(xué)生平均身高的估計(jì)值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表)(精確到0.01).

查看答案和解析>>

同步練習(xí)冊(cè)答案