【題目】如圖,在四棱錐P-ABCD中,平面ABCD,,,,.

1)證明:

2)求二面角的余弦值;

3)設(shè)Q為線段PD上的點(diǎn),且直線AQ和平面PAC所成角的正弦值為,求的值.

【答案】1)證明見(jiàn)解析;(2;(3

【解析】

1)以為原點(diǎn),軸,軸,軸,建立空間直角坐標(biāo)系,利用向量法能證明

2)求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值.

3)設(shè)為線段上的點(diǎn),,,,,,求出,由平面的法向量,且直線和平面所成角的正弦值為,利用向量法能求出結(jié)果.

解:(1)證明:∵在四棱錐中,平面ABCD,

,,,,.

∴以A為原點(diǎn),ABx軸,ADy軸,AP軸,建立空間直角坐標(biāo)系,

,,,

,

,∴.

2)解:,,

設(shè)平面APC的法向量

,

,得,

平面PCD的法向量,

設(shè)二面角的平面角為,

.

∴二面角的余弦值為.

3)解:設(shè)Q為線段PD上的點(diǎn),,

,

解得,,

,

∵平面PAC的法向量,

且直線AQ和平面PAC所成角的正弦值為

,

解得(舍),

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】新型冠狀病毒最近在全國(guó)蔓延,具有很強(qiáng)的人與人之間的傳染性,該病毒在進(jìn)入人體后一般有14天的潛伏期,在這14天的潛伏期內(nèi)患者無(wú)任何癥狀,為病毒傳播的最佳時(shí)間.假設(shè)每位病毒攜帶者在潛伏期內(nèi)每天有位密切接觸者,接觸病毒攜帶者后被感染的概率為,每位密切接觸者不用再接觸其他病毒攜帶者.

1)求一位病毒攜帶者一天內(nèi)感染的人數(shù)的均值;

2)若時(shí),從被感染的第一天算起,試計(jì)算某一位病毒攜帶者在14天潛伏期內(nèi),被他平均累計(jì)感染的人數(shù)(用數(shù)字作答);

331620時(shí)18分,由我國(guó)軍事科學(xué)院軍事科學(xué)研究院陳薇院士領(lǐng)銜的科學(xué)團(tuán)隊(duì),研制重組新型冠狀病毒疫苗獲批進(jìn)入臨床狀態(tài),新疫苗的使用,可以極大減少感染新型冠狀病毒的人數(shù),為保證安全性和有效性,某科研團(tuán)隊(duì)抽取500支新冠疫苗,觀測(cè)其中某項(xiàng)質(zhì)量指標(biāo)值,得到如下頻率分布直方圖:

①求這500支該項(xiàng)質(zhì)量指標(biāo)值的樣本平均值(同一組的數(shù)據(jù)用該組區(qū)代表間的中點(diǎn)值)

②由直方圖可以認(rèn)為,新冠疫苗的該項(xiàng)質(zhì)量指標(biāo)值服從正態(tài)分布,其中近似為樣本平均數(shù)近似為樣本方差,經(jīng)計(jì)算可得這500支新冠疫苗該項(xiàng)指標(biāo)值的樣本方差.現(xiàn)有5名志愿者參與臨床試驗(yàn),觀測(cè)得出該項(xiàng)指標(biāo)值分別為:206,178195,160229,試問(wèn)新冠疫苗的該項(xiàng)指標(biāo)值是否正常,為什么?

參考數(shù)據(jù):,若,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為提高服務(wù)質(zhì)量,隨機(jī)調(diào)查了60名男顧客和80名女顧客,每位顧客均對(duì)該商場(chǎng)的服務(wù)給出滿意或不滿意的評(píng)價(jià),得到下面不完整的列聯(lián)表:

滿意

不滿意

合計(jì)

男顧客

50

女顧客

50

合計(jì)

1)根據(jù)已知條件將列聯(lián)表補(bǔ)充完整;

2)能否有的把握認(rèn)為男、女顧客對(duì)該商場(chǎng)服務(wù)的評(píng)價(jià)有差異?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面中,ABC的兩個(gè)頂點(diǎn)A、B的坐標(biāo)分別為A(﹣1,0),B 1,0),平面內(nèi)兩點(diǎn)G、M同時(shí)滿足下列條件:(1;(2;(3,則ABC的頂點(diǎn)C的軌跡方程為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)狱c(diǎn)Px,y)滿足|x1|+|ya|1,O為坐標(biāo)原點(diǎn),若的最大值的取值范圍為,則實(shí)數(shù)a的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為α為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,(.

1)求曲線C的極坐標(biāo)方程;

2)設(shè)直線l與曲線C相交于不同的兩點(diǎn),,指出的范圍,并求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別為橢圓的左、右焦點(diǎn),為該橢圓的一條垂直于軸的動(dòng)弦,直線軸交于點(diǎn),直線與直線的交點(diǎn)為.

1)證明:點(diǎn)恒在橢圓.

2)設(shè)直線與橢圓只有一個(gè)公共點(diǎn),直線與直線相交于點(diǎn),在平面內(nèi)是否存在定點(diǎn),使得恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)雙曲線C1a0,b0)右焦點(diǎn)F2作雙曲線一條漸近線的垂線,垂足為P,與雙曲線交于點(diǎn)A,若 ,則雙曲線C的漸近線方程為(

A.y=±xB.y=±xC.y=±2xD.y=±x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).為自然對(duì)數(shù)的底數(shù))

1)當(dāng)時(shí),設(shè),求函數(shù)上的最值;

2)當(dāng)時(shí),證明:,其中表示中較小的數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案