【題目】如圖所示,在三棱錐A-BOC中,OA⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=,動點D在線段AB上.
(1)求證:平面COD⊥平面AOB;
(2)當OD⊥AB時,求三棱錐C-OBD的體積.
【答案】(1)詳見解析;(2).
【解析】試題分析:(1)欲證平面COD⊥平面AOB,根據面面垂直的判定定理可知在平面COD內一直線與平面AOB垂直,根據勾股定理可知OC⊥OB,根據線面垂直的判定定理可知OC⊥平面AOB,而OC平面COD,滿足定理所需條件;(2)OD⊥AB,OD=,此時,BD=1.根據三棱錐的體積公式求出所求即可
試題解析:(1)∵AO⊥底面BOC,
∴AO⊥OC,
AO⊥OB. ……3
∵∠OAB=∠OAC=30°,AB=AC=4,
∴OC=OB=2.
又BC=2,
∴OC⊥OB, ……6
∴OC⊥平面AOB.
∵OC平面COD,
∴平面COD⊥平面AOB. ……9
(2)∵OD⊥AB,∴BD=1,OD=.
∴VC-OBD =×××1×2=……12
科目:高中數學 來源: 題型:
【題目】高中流行這樣一句話“文科就怕數學不好,理科就怕英語不好”.下表是一次針對高三文科學生的調查所得的數據,試問:在出錯概率不超過0.01的前提下文科學生總成績不好與數學成績不好有關系嗎?
總成績好 | 總成績不好 | 總計 | |
數學成績好 | 20 | 10 | 30 |
數學成績不好 | 5 | 15 | 20 |
總計 | 25 | 25 | 50 |
(P(K2≥3.841)≈0.05,P(K2≥6.635)≈0.01)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(Ⅰ)設f(x)= ,求f(1+log23)的值;
(Ⅱ)已知g(x)=ln[(m2﹣1)x2﹣(1﹣m)x+1]的定義域為R,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.設H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(其中max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則A﹣B=( )
A.a2﹣2a﹣16
B.a2+2a﹣16
C.﹣16
D.16
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知O、A、B三地在同一水平面內,A地在O地正東方向2km處,B地在O地正北方向2km處,某測繪隊員在A、B之間的直線公路上任選一點C作為測繪點,用測繪儀進行測繪,O地為一磁場,距離其不超過km的范圍內會測繪儀等電子儀器形成干擾,使測量結果不準確,則該測繪隊員能夠得到準確數據的概率是( 。
A.1-
B.
C.1-
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 若f(x1)=f(x2),且x1<x2,關于下列命題:(1)f(x1)>f(﹣x2);(2)f(x2)>f(﹣x1);(3)f(x1)>f(﹣x1);(4)f(x2)>f(﹣x2).正確的個數為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com