【題目】(Ⅰ)設(shè)f(x)= ,求f(1+log23)的值;
(Ⅱ)已知g(x)=ln[(m2﹣1)x2﹣(1﹣m)x+1]的定義域為R,求實數(shù)m的取值范圍.

【答案】解:(Ⅰ)∵1+log23∈(2,3),
;
(Ⅱ)由題設(shè)得:(m2﹣1)x2﹣(1﹣m)x+1>0(*)在x∈R時恒成立,
若m2﹣1=0m=±1,
當m=1時,(*)式可化為:1>0恒成立,
當m=﹣1時,(*)式可化為:﹣2x+1>0不恒成立,
∴m=1;
若m2﹣1≠0,

綜上,實數(shù)m的取值范圍是
【解析】(I)由1+log23∈(2,3),故f(1+log23)=f(3+log23),進而根據(jù)指數(shù)的運算性質(zhì),可得答案.(II)若g(x)=ln[(m2﹣1)x2﹣(1﹣m)x+1]的定義域為R,則(m2﹣1)x2﹣(1﹣m)x+1>0(*)在x∈R時恒成立,分m2﹣1=0和m2﹣1≠0兩種情況結(jié)合二次函數(shù)的圖象和性質(zhì),可得滿足條件的實數(shù)m的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性;
(3)求證:f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】分類變量X和Y的列聯(lián)表如下:

y1

y2

總計

x1

a

b

a+b

x2

c

d

c+d

總計

a+c

b+d

a+b+c+d

則下列說法中正確的是(
A.ad-bc越小,說明X與Y關(guān)系越弱
B.ad-bc越大,說明X與Y關(guān)系越強
C.(ad-bc)2越大,說明X與Y關(guān)系越強
D.(ad-bc)2越接近于0,說明X與Y關(guān)系越強

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x+2)=f(x﹣2),且當x∈[﹣2,0]時,f(x)=( x﹣1,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)有3個不同的實數(shù)根,則a的取值范圍是(
A.(1,2)
B.(2,+∞)
C.(1,
D.( ,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在調(diào)查男女乘客是否暈機的情況中,已知男乘客暈機為28人,不會暈機的也是28人,而女乘客暈機為28人,不會暈機的為56人,
其中 為樣本容量。

P(K2≥k0)

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(1)根據(jù)以上數(shù)據(jù)建立一個 的列聯(lián)表;
(2)試判斷是否有95%的把握認為是否暈機與性別有關(guān)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在三棱錐ABOC中,OA底面BOC,OABOAC30°,ABAC4,BC,動點D在線段AB.

1)求證:平面COD⊥平面AOB;

2)當OD⊥AB時,求三棱錐COBD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O、A、B三地在同一水平面內(nèi),A地在O地正東方向2km處,B地在O地正北方向2km處,某測繪隊員在A、B之間的直線公路上任選一點C作為測繪點,用測繪儀進行測繪,O地為一磁場,距離其不超過km的范圍內(nèi)會測繪儀等電子儀器形成干擾,使測量結(jié)果不準確,則該測繪隊員能夠得到準確數(shù)據(jù)的概率是( 。
A.1-
B.
C.1-
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表是一位母親給兒子作的成長記錄:

年齡/周歲

3

4

5

6

7

8

9

身高/cm

94.8

104.2

108.7

117.8

124.3

130.8

139.1

根據(jù)以上樣本數(shù)據(jù),她建立了身高 (cm)與年齡x(周歲)的線性回歸方程為 ,給出下列結(jié)論:
①y與x具有正的線性相關(guān)關(guān)系;
②回歸直線過樣本的中心點(42,117.1);
③兒子10歲時的身高是 cm;
④兒子年齡增加1周歲,身高約增加 cm.
其中,正確結(jié)論的個數(shù)是
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)若函數(shù)有三個不同的極值點,求的值;

(2)若存在實數(shù),使對任意的,不等式恒成立,求正整數(shù)的最大值.

查看答案和解析>>

同步練習冊答案