【題目】已知O、A、B三地在同一水平面內(nèi),A地在O地正東方向2km處,B地在O地正北方向2km處,某測(cè)繪隊(duì)員在A、B之間的直線公路上任選一點(diǎn)C作為測(cè)繪點(diǎn),用測(cè)繪儀進(jìn)行測(cè)繪,O地為一磁場(chǎng),距離其不超過km的范圍內(nèi)會(huì)測(cè)繪儀等電子儀器形成干擾,使測(cè)量結(jié)果不準(zhǔn)確,則該測(cè)繪隊(duì)員能夠得到準(zhǔn)確數(shù)據(jù)的概率是( 。
A.1-
B.
C.1-
D.

【答案】A
【解析】解:由題意,△AOB是直角三角形,OA=OB=2,所以AB=2 ,
O地為一磁場(chǎng),距離其不超過km的范圍為個(gè)圓,與AB相交于C,D兩點(diǎn),作OE⊥AB,則OE= , 所以CD=2,所以該測(cè)繪隊(duì)員能夠得到準(zhǔn)確數(shù)據(jù)的概率是1﹣=1﹣
故選:A.

作出圖形,以長(zhǎng)度為測(cè)度,即可求出概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為, , .等 差數(shù)列中, ,且公差

求數(shù)列的通項(xiàng)公式

(Ⅱ)是否存在正整數(shù),使得?.若存在,求出的最小值;若 不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x+2)=f(x﹣2),且當(dāng)x∈[﹣2,0]時(shí),f(x)=( x﹣1,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)有3個(gè)不同的實(shí)數(shù)根,則a的取值范圍是(
A.(1,2)
B.(2,+∞)
C.(1,
D.( ,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐ABOC中,OA底面BOC,OABOAC30°,ABAC4BC,動(dòng)點(diǎn)D在線段AB.

1)求證:平面COD⊥平面AOB

2)當(dāng)OD⊥AB時(shí),求三棱錐COBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O、A、B三地在同一水平面內(nèi),A地在O地正東方向2km處,B地在O地正北方向2km處,某測(cè)繪隊(duì)員在A、B之間的直線公路上任選一點(diǎn)C作為測(cè)繪點(diǎn),用測(cè)繪儀進(jìn)行測(cè)繪,O地為一磁場(chǎng),距離其不超過km的范圍內(nèi)會(huì)測(cè)繪儀等電子儀器形成干擾,使測(cè)量結(jié)果不準(zhǔn)確,則該測(cè)繪隊(duì)員能夠得到準(zhǔn)確數(shù)據(jù)的概率是( 。
A.1-
B.
C.1-
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),x∈R,
(1)若f(﹣1)=0,且函數(shù)f(x)的值域?yàn)閇0,+∞),求F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[﹣2,2]時(shí),g(x)=f(x)﹣kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0且f(x)為偶函數(shù),判斷F(m)+F(n)能否大于零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是一位母親給兒子作的成長(zhǎng)記錄:

年齡/周歲

3

4

5

6

7

8

9

身高/cm

94.8

104.2

108.7

117.8

124.3

130.8

139.1

根據(jù)以上樣本數(shù)據(jù),她建立了身高 (cm)與年齡x(周歲)的線性回歸方程為 ,給出下列結(jié)論:
①y與x具有正的線性相關(guān)關(guān)系;
②回歸直線過樣本的中心點(diǎn)(42,117.1);
③兒子10歲時(shí)的身高是 cm;
④兒子年齡增加1周歲,身高約增加 cm.
其中,正確結(jié)論的個(gè)數(shù)是
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中, 點(diǎn)邊的中點(diǎn),將沿折起,使平面平面,連接得到如圖所示的幾何體.

(1)求證; 平面

(2)若二面角的平面角的正切值為求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】☉O為△ABC的內(nèi)切圓,AB=9,BC=8,CA=10,點(diǎn)D,E分別為AB,AC上的點(diǎn),且DE為☉O的切線,求△ADE的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案