【題目】下列說法錯誤的是

A. 對分類變量XY,隨機變量K2的觀測值k越大,則判斷“XY有關系的把握程度越小

B. 在回歸直線方程=0.2x+0.8中,當解釋變量x每增加1個單位時,預報變量平均增加0.2個單位

C. 兩個隨機變量的線性相關性越強,則相關系數(shù)的絕對值就越接近于1

D. 回歸直線過樣本點的中心(

【答案】A

【解析】A.對分類變量XY的隨機變量K2的觀測值k來說,k越大,“XY有關系”可信程度越大,因此不正確;

B.在線性回歸方程=0.2x+0.8中,當x每增加1個單位時,預報量平均增加0.2個單位,正確;

C.兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近1,因此正確;

D.回歸直線過樣本點的中心(, ,正確.

綜上可知:只有A不正確.

故選:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為研究某種圖書每冊的成本費(元)與印刷數(shù)(千冊)的關系,收集了一些數(shù)據(jù)并作了初步處理,得到了下面的散點圖及一些統(tǒng)計量的值.

表中, .

(1)根據(jù)散點圖判斷: 哪一個更適宜作為每冊成本費(元)與印刷數(shù)(千冊)的回歸方程類型?(只要求給出判斷,不必說明理由)

(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立關于的回歸方程(回歸系數(shù)的結(jié)果精確到0.01);

(3)若每冊書定價為10元,則至少應該印刷多少千冊才能使銷售利潤不低于78840元?(假設能夠全部售出,結(jié)果精確到1)

(附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知一工廠生產(chǎn)了某種產(chǎn)品700件,該工廠對這些產(chǎn)品進行了安全和環(huán)保這兩個性能的質(zhì)量檢測。工廠決定利用隨機數(shù)表法從中抽取100件產(chǎn)品進行抽樣檢測,現(xiàn)將700件產(chǎn)品按001,002,…,700進行編號;

(1)如果從第8行第4列的數(shù)開始向右讀,請你依次寫出最先檢測的3件產(chǎn)品的編號;

(下面摘取了隨機數(shù)表的第7~9行)

84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76

63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79

33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54

(2)抽取的100件產(chǎn)品的安全性能和環(huán)保性能的質(zhì)量檢測結(jié)果如下表:

檢測結(jié)果分為優(yōu)等、合格、不合格三個等級,橫向和縱向分別表示安全性能和環(huán)保性能。若在該樣本中,產(chǎn)品環(huán)保性能是優(yōu)等的概率為,求,的值。

件數(shù)

環(huán)保性能

優(yōu)等

合格

不合格

安全性能

優(yōu)等

6

20

5

合格

10

18

6

不合格

4

(3)已知,,求在安全性能不合格的產(chǎn)品中,環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某校6個學生的數(shù)學和物理成績?nèi)缦卤恚?/span>

學生的編號

1

2

3

4

5

6

數(shù)學

89

87

79

81

78

90

物理

79

75

77

73

72

74

(1)若在本次考試中,規(guī)定數(shù)學在80分以上(包括80分)且物理在75分以上(包括75分)的學生為理科小能手.從這6個學生中抽出2個學生,設表示理科小能手的人數(shù),求的分布列和數(shù)學期望;

(2)通過大量事實證明發(fā)現(xiàn),一個學生的數(shù)學成績和物理成績具有很強的線性相關關系,在上述表格是正確的前提下,用表示數(shù)學成績,用表示物理成績,求的回歸方程.

參考數(shù)據(jù)和公式:,其中,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC-A1B1C1中,AB=AC=1,BAC=90°,異面直線A1B與B1C1所成的角為60°.

(1)求該三棱柱的體積;

(2)設D是BB1的中點,求DC1與平面A1BC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的一個焦點在直線上,且離心率.

(1)求該橢圓的方程;

(2)若是該橢圓上不同的兩點,且線段的中點在直線上,試證: 軸上存在定點,對于所有滿足條件的,恒有;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

(1)若曲線在點處的切線與直線垂直,求的單調(diào)遞減區(qū)間和極小值(其中為自然對數(shù)的底數(shù));

(2)若對任意恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求a的值,并證明R上的增函數(shù);

2)若關于t的不等式f(t22t)f(2t2k)0的解集非空,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】寫出下面兩個的相關命題的逆命題、否命題、逆否命題,并判斷它們的真假:

1)命題:若,則.

逆命題:_______________________________________________________________

逆否命題:_____________________________________________________________

2)命題:設是實數(shù),如果,那么有實數(shù)根。

否命題:_______________________________________________________________

逆否命題:_____________________________________________________________

查看答案和解析>>

同步練習冊答案