【題目】在一次購物抽獎活動中,假設10張獎券中有一等獎獎券1張,可獲價值50元的獎品,有二等獎獎券3張,每張可獲價值10元的獎品,其余6張沒有獎品.

1)顧客甲從10張獎券中任意抽取1張,求中獎次數(shù)X的概率分布;

2)顧客乙從10張獎券中任意抽取2張,

①求顧客乙中獎的概率;

②設顧客乙獲得的獎品總價值Y元,求Y的概率分布及期望.

【答案】1)見解析;(2)①;②分布列見解析,16

【解析】

1)抽獎一次,只有中獎和不中獎兩種情況,1表示中獎,0表示不中獎,則X的取值只有0,1兩種,分別求出相應的概率,由此能求出X的分布列.

2)①顧客乙中獎可分為互斥的兩類:所抽取的2張獎券有1張中獎和2張都中獎,由此利用互斥事件概率加法公式能求出顧客乙中獎的概率.

②顧客乙所抽取的2張獎券中有0張中獎,1張中獎(11等獎或12等獎)或2張都中獎(2張二等獎或21等獎或12等獎12等獎),Y的可能取值為0,1020,5060,分別求出相應的概率,由此能求出隨機變量Y的概率分布列和數(shù)學期望.

1)抽獎一次,只有中獎和不中獎兩種情況,

1表示中獎,0表示不中獎,則X的取值只有01兩種,

PX0

PX1,

X的分布列為:

X

0

1

P

2)①顧客乙中獎可分為互斥的兩類:所抽取的2張獎券有1張中獎和2張都中獎,

∴顧客乙中獎的概率為:P.

②顧客乙所抽取的2張獎券中有0張中獎,1張中獎(11等獎或12等獎)或2張都中獎(2張二等獎或21等獎或12等獎12等獎),

Y的可能取值為0,10,20,50,60,

PY0,

PY10,

PY20,

PY50,

PY60,

∴隨機變量Y的概率分布列為:

Y

0

10

20

50

60

P

EY16.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中,錯誤的是( )

A.將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,方差不變

B.對于回歸方程,變量每增加一個單位,平均增加5個單位

C.線性回歸方程所對應的直線必過點

D.在一個列聯(lián)表中,由計算得,則有的把握說兩個變量有關

本題可以參考獨立性檢驗臨界值表

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】拋物線的焦點為,已知點為拋物線上的兩個動點,且滿足.過弦的中點作拋物線準線的垂線,垂足為,則的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形,的中點,為折痕將折起,使點到達點的位置且平面平面,中點.

(1)求證:平面;

(2)若,,求三棱錐的高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列是合情推理的是(

①由正三角形的性質類比出正三棱錐的有關性質;

②由正方形矩形的內角和是,歸納出所有四邊形的內角和都是;

③三角形內角和是,四邊形內角和是,五邊形內角和是,由此得出凸邊形內角和是

④小李某次數(shù)學考試成績是90分,由此推出小李的全班同學這次數(shù)學考試的成績都是90分.

A.①②B.①②③C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求在點處的切線方程;

(Ⅱ)若,求函數(shù)的單調區(qū)間;

(Ⅲ)若對任意的,上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的方程為3x+4y-12=0,求直線l′的方程,使得

(1)l′與l平行且過點(-1,3);

(2)l′與l垂直且l′與兩坐標軸圍成的三角形的面積為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在梯形中,,,,,且,又平面,.

求:(1)二面角的大。ㄓ梅慈呛瘮(shù)表示);

2)點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】學校藝術節(jié)對同一類的,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“,兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

同步練習冊答案